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Abstract—The rapid integration of Unmanned Aerial Vehi-
cle(UAV) with existing network infrastructure brings enormous
benefits to users, however it also introduces vulnerabilities to
information security. In this paper we investigate a UAV-aided
secure communication system, where a UAV is deployed to
transmit confidential information to a ground user. Specifically,
a mobile eavesdropper is moving in the vicinity of the ground
user, attempting to intercept legitimate data transmissions. Its
unpredictable trajectory poses as an extra security risk to
UAV data transmission. Driven by this security challenge, we
aim to optimize the UAV trajectory to maximize user average
secrecy rate. Due to the fast changing environment caused by
unpredictable movement of the eavesdropper, this nonconvex
optimization problem is difficult to solve. Instead, we propose
an online algorithm leveraging the Q-learning framework to
deliver online decisions on UAV trajectory. With the help of
carefully designed reward signals, the agent is able to learn
an effective policy with desirable learning outcomes. Numerical
results validate the effectiveness of the proposed algorithm, and
shed light on learning outcomes with a variety of learning
parameters.

Index Terms—physical layer security, unmanned aerial
vehicle,Q-learning, reward signals, secrecy rate

I. INTRODUCTION

Unmanned Aerial Vehicles(UAVs) promise great Line-of-
Sight(LoS) connectivity, flexible deployment and coverage
extension beyond traditional terrestrial access points(APs),
and their integration into existing network infrastructure is
essential to provide a seamless experience for network users.
In disaster hit areas where sudden network failure occurs,
UAVs can be quickly deployed to provide wireless access
to network users. In hotspot areas where network service
provided by existing terrestrial infrastructure can not meet user
demand, UAVs can improve network capacity and mitigate
network congestion. In addition, the versatility of UAVs is
proved to be a greatly useful asset, as UAVs can act as flying
transmitters/receivers,jammers,relays,etc. These multi-faceted
benefits provided by UAVs is becoming a driving force for
network paradigm shift toward ubiquitous connectivity [1].

Despite the numerous benefits, the forthcoming integration
of UAVs with existing network infrastructure also brings
some vulnerabilities. In particular, as wireless channels are in
essence broadcast channels and LoS propagation can be easily
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exploited by a malicious attacker to enhance its eavesdropping
ability, data transmission between UAVs and legitimate users
are prone to eavesdropping attacks. Thus how to ensure data
integrity and preserve user privacy becomes critical to provide
security for users. Although higher level data encryption can
be adopted to mitigate security risks, it consumes a lot of
computing resources, which are relatively scarce in UAVs.
Recently Physical Layer Security(PLS) has emerged as a
promising method due to its ability to provide perfect secrecy
regardless of computation resources and security protocols.
Thus the application of PLS in UAV-aided communications
has attracted significant research attentions [2].

To fully utilize the potential of UAV deployment, UAV tra-
jectory must be optimized alongside other communication pa-
rameters, such as power and scheduling. This can be done via
the traditional joint optimization method [2],by decomposing
the main problem into several subproblems and employing an
alternating iterative algorithm. However this approach require
perfect information on the environment, which is difficult to
obtain in dynamically changing scenarios. In addition, as high-
dimensional optimization variables become increasingly large,
this nonconvex optimization problem becomes increasingly
intractable, and is difficult to converge and extremely computa-
tionally intensive. On the other hand, machine learning method
can deliver online solutions to highly complex problems in a
highly dynamic environment, and has attracted much recent
attentions. In [3] a Reinforcement Learning(RL) algorithm is
introduced to determine UAV trajectory to maximize user sum
rates. In [4] a multi-agent deep RL algorithm is proposed to
jointly optimized trajectory and power of UAVs and jammers.
In [5] a deep Q network is proposed to solve the positioning
and power of static UAVs. In [6] a deep RL algorithm is
employed to optimize secrecy throughput in a UAV-aided
NOMA communications network.

In this paper we propose a reinforcement learning algorithm
to deliver online decision on UAV trajectory to optimize
network secrecy throughput. Our work differs from other
existing work in that we introduce more randomness in the
considered scenario, by assuming eavesdroppers are mobile
and their mobility pattern can not be predicted. To deal with
the challenge of roaming attackers, we propose a Q-learning
based online algorithm to optimize UAV trajectory, which
requires no information on movement pattern of attackers.
With the help of carefully designated reward functions, the
agent is trained to complete its flight task and provide secure
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communications to users. Simulation results show the UAV
agent can effectively learn to adapt its trajectory to roaming
attackers.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Eave

Eavesdropping Link

_—

Fig. 1. An illustration of UAV secure communication system with moving
adversaries

As depicted in Fig.1, we consider a UAV-aided communica-
tion network that consists of one UAV transmitter,one ground
user(GU), and one roaming ground eavesdropper(eave). We
consider a three dimensional Cartesian coordinate system and
without loss of generality we assume the ground user is placed
at the origin. During the flying time 7', the UAV flys at a given
altitude H from a predetermined starting point {xs,ys, H},
and end its mission at a landing point {z,ys, H}. At the
same time, a roaming eave is wandering in the vicinity of
GU. When UAV and eave change their positions, they move
at a maximum velocity of V,, and V, respectively. The flying
time 7' is discretized into N time slots with equal length
Nt = % and at t¢th time slot, the UAV is located at the
coordinate {z[t],y[t], H},t € N = {1,2,3,..., N}, and the
eave is located at {x.[t], y.[t], 0}. Thus the UAV-GU distance
d,[t] and UAV-eave distance d.[t] are given by

du[t] = /x[t]2 + y[t]2 + H? (1
de[t] = v/ (@[t] — e[t])? + (y[t] — velt])? + H? )

We assume the UAV is transmitting at a constant power P
and the wireless link between UAV and GU is LoS dominated.
Thus the channel gain h,[t] of the UAV-GU link and the
channel gain h.[t] of the UAV-eave link are given by

Bo

hlll = i 3)
hoft] = % @)

where (3, is the channel power gain at the reference distance
of 1m. Hence the UAV-GU data transmission rate R, [t], and
the UAV-eaves eavesdropping rate R,[t], are given by

R, t] = log(1 + Pif;[t]) 5)
Re[t] = log(1 + PZZM> (©)

where §2 is the thermal noise power. By exploiting the PLS
mechanism, the UAV can provide an achievable secrecy rate
Rsec, which is the rate difference between the legitimate UAV-
GU link and the UAV-eave wiretap link

Rsec[t] = [Ru [t] - Re [t]]Jr (7)
where [z]T = max{z,0}.
B. Problem Formulation

Our goal is to maximize the average secrecy rate R

sec

throughout the entire flying period 7. R2%9 is expressed as

1 N
R?:éq = N Z Riec [t] (3)
t=1

Thus the secrecy rate optimization problem can be formulated
as

max R:YI )
{altlylt]}
s.t. x[1] = zs,y[1] = ys (9a)
z[N] = a5, y[N] = yy (9b)
V(alt +1] = 2[t])? + (y[t + 1] — y[t])?)
<Vyt=1,2...,N—1 9c)

Several issues arise with problem (9). First, it is noncon-
vex since R [t] is the difference of two convex functions.
Although its solution can be approximated using the Succes-
sive Convex Approximation(SCA) method [2], this method
is generally slow to converge and computationally inten-
sive,particularly with large dimensions of trajectory variables.
Secondly, to solve this optimization problem, the path of eave
movement {z.[t], y.[t]} must be known in advance,which is
impossible to predict for randomly moving adversaries, and
this optimization problem has to be solved in a centralized
and offline way. Hence it is desirable to make online trajectory
decisions that can adapt to fast changing environment,i.e.
randomly moving adversaries, and we leverage the Q-learning
reinforcement learning method to maximize user average se-
crecy throughput R29

sec *
III. Q-LEARNING FOR TRAJECTORY DESIGN

Q-learning is a model-free,table-based reinforcement learn-
ing method that allows agents to learn through interactions
with its environment [7]. The learning framework can be
represented by a finite Markov Decision Process(MDP) that
provides a formalization of sequential decision making con-
cerning both immediate awards and future rewards. To allow
agents to repeatedly interact with the environment in a se-
quence of time steps, we provide a finite MDP representation
of agents and environment in the following subsection.
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A. the MDP representation

In the proposed MDP framework, the flying UAV is the
learning agent, and the GU and eave constitute its environ-
ment. At each time step ¢ € N, the agent receives some
representations of its environment’s state, s; € S, and selects
an action a; € A. At time step ¢ + 1, the agent receives a
numerical reward,r;11 € R,and enters a new state S;.1 € S.
The finite sets of states, actions and rewards(S, A, R) allow
us to define a state transition probability

p{s/\s, a} & Prisi1 = s,|st =S,a;41 = a} (10)

and a discounting factor v € [0,1) that determines the
present value of future rewards. Thus our MDP can be fully
represented by the tuple {S, A, R, P,v}:

o State space S. This state space S = {s1, $2,...} U{sr}
is the representation of the environment, and we use the
UAV and eave’s ground locations to characterize S. That
is w5 = {aln], ylnl, aelnl, yelnl}, zln] # 27, yln) # yy.
The state sy, represents the landing state where the agent
reaches the landing position, s;, = {xy,ys}. To make
state space finite, we further discretize the horizonal plane
into KC x K grids, and we assume the UAV is located at
those grid points at each time step. Similarly we assume
the eave moves in the vicinity of GU and its movement
area is also discretized into a smaller M x M grid world.

o Action space A.Without loss of generality, we allow the
UAV to move in four directions, or remain static. Thus
A = {!static’ ' left’) right') up’,’ down'}.

o Reward function R. The reward not only concerns the
secrecy rate, but also involves some auxiliary awards that
gives penalties to boundary violations and encourages the
UAV to fly close to GU.

« State transition probability P

« Discounting factor v € [0, 1)

When the agent chooses some action a; € A at time step ¢,
it moves in corresponding direction and this MDP transitions
from state s, to the next state s;1. However, to force the agent
stay at the landing point when time limit expires, we use state
sz, as the terminal state that ends one episode. This landing
state can only transition to itself at the next time step regardless
of whatever action the agent may take,i.e. p{sp|sp} = 1.

B. the Q-learning Process

The goal of Q-learning for agent is to learn a behavior
rule,or a policy m,that determines the probability of selecting
each possible action in a given state. If the agent is following
policy 7 at time ¢, then

an

When the agent follows policy 7 in state s, s can be assigned
a value through a state-action value function to reflect the
expected future return. In Q-learning, this state-action value is
represented by the Q values, that approximate future rewards
regardless of policy followed after current time step

Qr(s,a) = E{R¢|s: = s,ar = a}

7(s,a) = Pr{ia: = als: = s}

12)

where R; is the discounted cumulative future rewards at time
step ¢

T—1
Ry = Z ’Ykrt+k+1 (13)
k=0
Given state-action values @, (s,a),a greedy policy can be
employed to select the optimal action

7 (s,a) = argmax Q* (s, a) (14)
where Q* (s, a) is the optimal value of state-action pair (s, a).
This value can be approximated using an iterative updating
rule [7]

Qr(st,at) — Qn(s¢,a:)+

a(ry +’ym3XQn(st+1,a) — Qr(st,a¢)) (15)

where the last part of eq.(15) is the temporal-difference(TD),
or the TD error between current estimate and updated estimate
based on next state and next reward. The learning rate o €
[0, 1] is a step-size parameter that determines the importance of
new information on estimates and discounting factor y € (0, 1]
determines the importance of future rewards with respect to
immediate reward. This Q-learning process is guaranteed to
converge under proper size « [7].

C. Q-Learning for UAV Trajectory Design Against Roaming
Adversaries

In this section we proceed to design our Q-learning frame-
work for UAV trajectory planning. Since the agent flies in a
bounded area, a penalty 7,., of negative real number must
be given to the agent to penalize violations of boundary
conditions. When the agent takes any action that results in
a boundary violation,it receives the penalty 7., and reduces
the value of the state-action pair, and remain static at next
time step. Furthermore, when the agent flies in areas with
Zero secrecy rate,i.e., areas far away from users and with very
poor link quality and rate,it should be encouraged to learn to
fly close to users and try to find better places with positive
secrecy rate. Hence we give an extra reward r, to the agent,
depending on the Euclidean distances between agent and GU.
In addition, to direct the agent to learn to fly to the landing
position, we designate a specific reward r;[t] that gradually
increase its penalty to the agent as time step approaches the
time limit. These rewards constitute the auxiliary reward 74,
at time slot ¢ as

Tau [t] = Tpen [t} + 74 [t] + 7 [t]

¢ nd[t]
= t — 16
rpen[}+du[t] N+1—t ( )
where (,n are hyperparameters that control the
weight of distance-based rewards, and d;[t] =

V(@[t] —zp)? + (y[t] — yy)? is the distance to the landing
location.

When agent reaches the landing point at the final time step,
with d;[N] = 0 the penalty r;[N] = 0. Furthermore,the agent
is given a one-time positive reward 7y, which is a relative large
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real number to encourage agent to stay at the landing point
when flight time ends. The reward given to agent at time step
t is a combination of secrecy rate,the auxiliary reward and the
end point arrival reward

1t = (Rsee[t] + Tault])(1 — I(t)) + 1y (17)

where I[t] is a 0-1 indicator and I(¢) = 1 if agent reaches the
landing point and O otherwise. It can be seen that when agent
reaches the landing point, it receives the one-time reward 7
and zero reward afterwards before time expires.

At the start of training, to encourage agent to explore all
possible actions, all table entries of Q values for state-action
pairs are assigned a positive initial value go. The agent picks
its optimal action from its current state s according to a &-
greedy policy

{arg max Q¢ (s, a),with 1 — & probability
ay = @

random action,with £ probability

(18)

The parameter £ determines whether the agent should stick
to its current best action, or explore other possible actions, and
is referred as the exploration-exploitation tradeoff. As training
continues, ¢ can be gradually decayed from a higher initial
value p,ie. {o =1, to a lower bound &;

280
number of episodes

& = max{{y, & — } (19)

Our Q-learning algorithm is presented in Algorithm 1.

Algorithm 1 Q-learning Algorithm for UAV Trajectory Design
Against Roaming Adversaries
1: Initialization: State space S,action space .4, Q-table
Q(s,a) < qo,Vs € §,Va € A, learning rate «, discount-
ing factor v,greedy probability £ < &.
2: for each episode do
3: Return both the UAV and the eave to their starting

ositions. Receive the initial observation s.
4: ort=1,2,...,N do
5.

Choose action a; using &-greedy policy according

to eq.(18).

6: Get reward r; according to eq.(17) and observe the
next state s;i1.

7: Update Q(s¢, at) according to eq.(15).

8: Update state: s; <— S¢y1.

9: end for

10: Decay the greedy probability £ according to eq.(19).
11: end for

IV. NUMERICAL RESULTS

In this section we evaluate the performance of our proposed
algorithm. We consider a 100m x 100m horizonal plane and the
UAV flies at a fixed height = 50m. The horizonal plane is
discretized into a 20 x 20 grid world with an axis interval Ad =
5m. GU is located at the origin, and the UAV starts its flight
at {—30,—30, 50} m and finishes its mission at {30, 30, 50} m.
The eave starts its movement at {—5, —5,0}m and follows

a random walking model. The movement area of the eave is
discretized into a smaller 5 x 5 grid world with Ad = 5m and
centered around the origin at ground level. Time step is set
as At = 1s. Other than remaining static, both the UAV and
the eave move in four directions with speed V,, = V, = bm/s.
The UAV transmits at a power level of P = 30dbm, and the
channel gain at the reference point is set as §y = —30dB. We
set the thermal noise power 02 = —50dbm. The flying time
is set as 1" = 200s.

The learning hyperparameters are configured as follows.
The learning rate is set as a = 0.3, and the initial exploration
ratio is §y = 1 and the lower bound is & = 0.1. The
discounting factor is v = 0.99. Each time the agent chooses
an action that leads to boundary condition violations,agent
remains static and receives a penalty ry., = —100. The one-
time reward for arrival at end location is 7y = 3000.

Fig.2 depicts the UAV trajectory after completing n =
180000 episodes of training with learning parameters a =
0.3,7 = 0.99. At the early stage of its fight, the agent learns
to fly close to the user, thanks to the increasing rewards given
with shorter distances to the user. Then the agent tries to find
positions in the vicinity of the user with better secrecy rate.
In the final stage, when large distance to the landing position
triggers increasingly large penalty as time approaches time
limit, the agent learns to first fly close to, and then reach the
landing location in order to lower the penalty and receive the
relatively large landing reward. This shows that the agent is
able to infer useful information on network topology, and with
the help of reward signals, the agent is able to adopt a suitable
policy with desirable learning outcomes.
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Fig. 2. UAV trajectory after n = 180000 episodes of training with learning
parameters o = 0.3, = 0.99 in the simulated environment of one user and
one moving eavesdropper. The color bar shows time steps in different colors
and movement of the eave is shown in the smaller axes.

Fig.4 shows the episodic rewards per training episodes
over the entire flying period with different configurations of
learning parameters. The agent is trained up to n = 200000
episodes in all three setups. Note that the plot shows the
average episodic rewards per 1000 episodes. It can be seen that
in all three setups the learning algorithm converges, and the
agent is able to receive high episodic rewards by successfully
reaching the terminal state s; and thus receiving the large
landing reward. One can see that with a = 0.01 the agent is
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able to receive relatively higher episodic rewards in the later
stage of training, compared with &« = 0.1 and o = 0.3.
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Fig. 3. Mean episodic rewards versus training episodes with different learning
rates . Rewards are averaged over 1000 episodes.

Fig.4 shows the average user secrecy rate versus training
episodes with different learning parameter «. It can be seen
that when training ends the agent achieves a relatively stable
user secrecy rate in all three setups. One can observe that with
a = 0.01 the agent is able to achieve higher average secrecy
rate. Since there is no explicit rule to choose the learning
parameters, « = (.01 in combination with v = 0.99 can
produce relatively good results.

0.6

!
—A—a=03,v=099
—o—a=01,7=099
—4—a = 0.01,7 = 0.99

<

o

o
T

o
3

<
'S
[

o
w
3

o
w

Average secrecy rate(bits/s/Hz)
o
~

°
i\
@

100000 150000

Number of episodes

200000
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V. CONCLUSION

In this paper we have investigated UAV trajectory design
to provide secure data transmissions for ground users in the

presence of moving eavesdroppers. The unpredictable move-
ment of roaming eavesdroppers bring more randomness and
introduce extra security risks, and call for an online solution
to optimize user secrecy rate. To deal with this challenge
we have proposed a Q-learning based online algorithm to
determine UAV trajectory. With the help of carefully designed
reward signals the agent is shown to effectively learn to find
a trajectory that optimize user secrecy rate and complete its
fight task from its starting position to its landing location.
Simulation results have validated the effectiveness of our
algorithm, and provided useful insight on learning outcomes
with a diverse configuration of learning parameters.

Our work have primarily focused on the classical tabular
Q-learning method, which does not scale well with higher
dimensions of state and action spaces. In future work we
will consider more state-of-the-art Q-learning variants, and
combine function approximation methods and deep neural
networks with Q-learning, and consider multiple UAVs as
learning agents or adversaries.
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