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Abstract—When mobile devices equipped with multiple wire-
less network interfaces access the Internet through Wi-Fi, 4G,
and 5G, external factors such as radio waves can lead to an
increased packet loss rate, resulting in a slowdown in com-
munication speed. To address this issue, two solutions exist:
BBR, a congestion control algorithm designed to reduce the
impact of packet loss and bicast in multihomed networks.
Bicast in multihomed networks leverages multiple networks for
communication, allowing simultaneous transmission of the same
packet across multiple networks to reduce packet loss rates and
prevent communication speed reduction. This paper introduces
a novel network architecture that uses QUIC and SDN, both
of which can be implemented in the userland. This network
architecture enables the realization of a multihomed network
independent of the operating system, and the congestion control
algorithm can be easily configured. Additionally, because QUIC
lacks bicast capabilities for multihomed networks, this deficiency
is addressed through SDN implementation. By using the proposed
multihomed network, we measure communication speeds for
unicast and bicast packets from the server when varying the
packet loss rate. The results indicate that the communication
speed could be maintained even with a 15% packet loss rate for
unicast communication and 32% for bicast communication.

Index Terms—QUIC, SDN, Multihomed Network, Bicast, BBR

I. INTRODUCTION

The number of mobile devices has been increasing sig-
nificantly according to the Cisco Annual Report [1]. These
mobile devices generally communicate using wireless net-
works, such as 4G, 5G, and Wi-Fi. Wireless networks lead
to communication instability compared with wired networks.
One of the factors causing this instability is packet loss due to
external influences such as radio interference [2]. Packet loss
results in lowering communication speed. Hence, mitigating
the reduction of communication speed due to packet loss in
wireless networks is essential.

TCP, which is currently used in the transport layer protocol,
has a problem that the communication speed is significantly
reduced in a network where packet loss frequently occurs.
Specifically, CUBIC [3], the congestion control algorithm for
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TCP in Linux and Windows, tends to perform extremely
poorly in lossy networks. CUBIC reduces communication
speed to 1/10 when the packet loss rate is 0.1% [4]. CU-
BIC is a loss-based congestion control algorithm, thus the
communication speed reduction whenever packet loss occurs.
Meanwhile, BBR [4] determines the communication speed
based on the RTT and bandwidth, so packet loss have relatively
less impact on the communication speed reduction. Therefore,
configuring the congestion control algorithm to BBR, which
is resistant to packet loss, can prevent communication speed
reduction due to packet loss. However, it is hard to introduce
new congestion control algorithms because it requires kernel
updates. On the other hand, using bicast, where the same
packet is transmitted through multiple paths simultaneously in
multihomed networks, can reduce packet loss rate and stabilize
communication in lossy network. TCP can perform bicast
by using Multipath TCP (MPTCP) [5], which is designed
to support multihomed networks. To use MPTCP, it must be
implemented on both the client and server sides. However,
MPTCP cannot be used in all communication devices because
it needs to be implemented in the OS.

In contrast, QUIC [6] has been attracting attention as
a general-purpose network transport layer protocol. QUIC
is a connection-oriented transport layer protocol like TCP,
developed based on UDP, and enables flexible control in
the userland. Thus QUIC is easy to configure a congestion
control algorithm due to flexibility in userland development.
Additionally, QUIC does not use IP addresses to identify
connections, so QUIC can receive packets from different end-
to-end routes as packets on a single connection.

To prevent communication speed reduction in lossy net-
works, this study introduces a novel network architecture that
uses QUIC to enable flexible software-defined control through
OpenFlow switches. OpenFlow, the protocol that enables SDN,
controls and changes the routing of multihomed networks in
QUIC. Additionally, a QUIC proxy is implemented to seam-
lessly convert communication between TCP and QUIC for
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both the client and proxy server. This enables communication
via QUIC without requiring modifications to existing appli-
cations. We implement the proposed network architecture on
real devices. Additionally, we evaluate communication speed
using QUIC proxy across various packet loss rates and set
congestion control algorithm to BBR. Additionally, we assess
communication speed employing the proposed architecture for
bicast full of server communication.
The contributions of this paper include:

o Introducing a novel network architecture that mitigates
communication speed reduction due to packet loss under
flexible congestion control algorithms and multiplexing
of communications using QUIC.

o Implementing QUIC proxy to consider compatibility with
existing applications that do not support QUIC.

e Our proposed architecture can ensure stable communica-
tion, even in scenarios where packet loss is up to 15%
for unicast and 32% for bicast in wireless networks.

II. FUNDAMENTAL TECHNOLOGIES
This section describes the basics of QUIC, BBR, and SDN.

A. QUIC and TCP

QUIC is designed as a secure general-purpose transport
protocol over UDP to improve web performance. It is designed
to address many of the limitations of TCP, including reducing
latency, enhancing security, and addressing the head-of-line
blocking problem. The notable advantage of using QUIC
compared to TCP include:

o Support for IP address changes
When identifying connections, TCP uses a 5-tuple. There-
fore, if the IP address changes during the connection,
this connection can not be continued. On the other hand,
QUIC uses Connection ID (CID) to uniquely identify
communications. This feature enables seamless commu-
nication persistence, even in cases where IP addresses
change, as long as the CID remains consistent.

o Encryption and Authentication
TLS is used in conjunction with TCP because TCP
has no encryption and authentication function. On the
other hand, QUIC encrypts communications and provides
authentication. Therefore, communication can be initiated
securely with just a QUIC handshake. The authentication
function can also be used to restrict connections to
specific users or devices.

¢ Operation in the userland
Since TCP is implemented in the kernel, it is not easy
to update functions. On the other hand, QUIC is im-
plemented in the userland, making it independent of
the OS kernel. This userland implementation of QUIC
offers several advantages, including the ability to utilize
new functionality without requiring kernel changes and
simplifying portability to other devices. Furthermore,
its versatility allows it to be employed across various
communication devices that support UDP.

However, QUIC has the disadvantage of a low adoption rate
compared to TCP because QUIC is a relatively new transport
layer protocol.

B. BBR

The loss-based congestion control algorithm, such as New
Reno and CUBIC, considers packet loss as an indicator
of congestion. When a packet loss event is detected, these
algorithms reduce the window size and try to avoid congestion.
Therefore, in a network where packet loss is likely to occur,
the window size tends to be small and the communication
speed is reduced.

In contrast, BBR sets the sending rate from the round-trip
time (RTT) and bandwidth, allowing stable communication
up to a packet loss rate of 15% [4]. In addition, BBR outper-
forms CUBIC in both short and long downloads, especially
in networks with packet loss [7] [8]. BBR is a congestion
control algorithm designed to optimize the performance of
network connections, particularly in scenarios where there is
limited available bandwidth or high latency. BBR focuses on
estimating the bandwidth of the bottleneck, which typically
refers to the link with the narrowest capacity along the data
path. This estimation is achieved through real-time probing of
the network to determine available bandwidth. Additionally,
BBR takes into account the round-trip propagation time,
which is the minimum round-trip time probed as an estimate
during a specific time window. By actively measuring and
factoring in the RTT, BBR dynamically adjusts its sending
rate to prevent congestion and minimize queuing delay. The
goal of BBR is to adapt its sending rate to maximize link
utilization without inducing congestion and excessive queuing
at bottleneck points.

C. SDN

SDN is a technology that flexibly manages and configures
network settings and functionality through software. In con-
trast to traditional networks, which are hardware-centric with
network devices, such as switches and routers, having their
own logic and control mechanisms, SDN separates the control
plane from the data plane and centralizes control plane man-
agement. The key advantages of SDN are enhanced network
flexibility, efficiency improvements, and traffic optimization.

OpenFlow is a protocol used in SDN to separate the control
of network devices from the actual data transmission process.
In the OpenFlow, network devices are responsible solely for
data forwarding, while the management of routing, flow con-
trol, and related functions is centralized within the OpenFlow
controller. OpenFlow switches operate by processing incoming
packets based on flow tables that dictate packet handling.
These flow tables can define packet behaviors according to
attributes like IP and MAC addresses. Consequently, Open-
Flow switches offer flexibility in configuring routing control.

III. NETWORK ARCHITECTURE FOR COMMUNICATION
STABILIZATION WITH QUIC AND SDN

TCP, which uses CUBIC as its congestion control algorithm,
has the problem of significantly reducing communication
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speed in networks where packet loss occurs. To address this
problem, we implement a network that uses BBR resistant to
packet loss as a congestion control algorithm and performs
bicast in a multihomed network.

We propose the network architecture used for data transmis-
sion from a server to a client. The proposed network architec-
ture is shown in Figure 1. In this study, we use the capabilities
of QUIC and OpenFlow to establish a multihomed network
environment. QUIC, being implemented in the userland, is in-
dependent of the OS. It ensures uninterrupted communication
even when IP addresses change, enabling simultaneous use of
multiple networks. OpenFlow facilitates control over commu-
nication routes through the configuration of flow tables. This
combination of QUIC and OpenFlow can realize multihomed
networks. The client and proxy server incorporate a QUIC
proxy, converting seamlessly TCP to QUIC and QUIC to TCP.
Communication between the client and QUIC proxy 1, QUIC
proxy 2 and the server communicate via TCP, while QUIC
proxy 1 and QUIC proxy 2 communicate via QUIC. BBR is
configured as a congestion control algorithm for QUIC.

A. QUIC proxy

Currently, only 26.8% of HTTP servers support QUIC,
and many servers do not support this protocol [9]. To use
the proposed network without necessitating modifications to
existing applications, we implement a QUIC proxy in a client
and proxy server.

Figure 2 presents a ladder diagram that depicts the flow
of the HTTP transaction as it passes through a QUIC proxy.
HTTP transactions are executed as follows. Initially, a hand-
shake takes place between the client and QUIC proxy 1, QUIC
proxy 1 and QUIC proxy 2, and QUIC proxy 2 and the server.
The QUIC proxy then converts the TCP data received from
the client and server into QUIC STREAM frames and sends
them to the QUIC proxy to which it is connected. Similarly,
the QUIC proxy converts the received QUIC STREAM frames
into TCP and sends them to the client and server. ACKs are
used in each connection to confirm the successful reception
of data. This mechanism allows the QUIC proxy to promptly
retransmit packets in case of packet loss in the wireless
network using QUIC. The process of packet retransmission
in QUIC is illustrated in Figure 3.
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Fig. 2. HTTP transaction over QUIC proxy (PN: packet number)

Da\a/l/—/
EN\A P .//Data 2/,,«
PN STRERT - (=
oL o
pate} _L—  pnd STREA . ‘/))/a/\?///
><'é o STRERE —
paed
— .
Nl STREN\A =
Da\a}/ e -
2=
Client QuIC QuiC Server
Proxy 1 Proxy 2

Fig. 3. Packet retransmission in QUIC (PN: packet number)

B. OpenFlow for bicast

OpenFlow enabled bicast, which simultaneously transmits
a single packet across multiple networks. Bicast offers a
significant advantage over unicast, particularly in terms of
lowering packet loss rates. This is because a packet loss in
bicast occurs when packet losses simultaneously happen in
multiple networks. In our study, we have chosen to implement
bicast only for data originating from the server side. The client
must receive all packets to download data from the server.
Therefore, a packet loss causes the communication speed to
decrease because of the overhead of retransmission. Typically,
the data from the client side is sent only for ACK. These data
are less sensitive to packet loss and have minimal effects on
communication speed, even in the presence of some degree of
packet loss. In addition, if bicast of the data from the client
using QUIC is enabled, OpenFlow must be implemented in
the client. However, it is hard to implement OpenFlow for all
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Fig. 5. Client communication using OpenFlow.

clients. Thus, we perform bicast only the data from the server
side by using OpenFlow.

Figures 4 and 5 show server and client communications
using OpenFlow, respectively, and Tables I and II show flow
and group tables, respectively. The OpenFlow switch dupli-
cates QUIC packets from the server and sends them to the
client through two different routes. However, a conventional
flow table typically allows only one port to transmit packets.
To address this issue, we use a group table in the flow
table actions to perform bicast. The group table serves as a
mechanism that enables the collective definition of multiple
ports for processing, thereby facilitating the use of diverse
routes. To ensure that the packets are sent through all selected
ports, we configure the “all” type in the group table settings.
In practice, the group table is used by specifying the ID of
the group table as the output destination in the Instruction
of the flow table. Consequently, packets originating from the
servers are sent through all selected ports. Notably, if these
packets match the defined match fields in Table I, their source
IP address, source MAC address, and destination MAC address
are dynamically altered to align with the designated routing
requirements. Thus, bicast is performed by configuring the
OpenFlow flow table and group table.

TABLE I
FLOW TABLE OF OPENFLOW IN FIGURE 4 AND 5

Match fields
dst_ip=192.168.10.1
src_ip=192.168.10.1

Instructions
processing group table 1
send to QUIC proxy 2

TABLE 11
GROUP TABLE OF OPENFLOW IN FIGURE 4 AND 5

Group ID | Type | Action Bucket
| all send to client via port 1
send to client via port 2
TABLE III

BICAST FLOW TABLE IN FIGURE 6

Match fields
dst_ip=192.168.11.3

src_ip=192.168.11.3

Instructions
Output:groupl
dst_MAC=QUIC proxy 2

Output: 3

IV. EVALUATION
A. Test environment

In our experimental network, as shown in Figure 6, we
implement the multihomed network using QUIC. Hardware
specifications of the client and proxy are shown in Table
VI, and Raspberry pi 4 Model B is used as the server. The
flow and group table of the OpenFlow switch for bicast are
shown in Table III and IV, respectively, and the flow table
for unicast is shown in Table V. The network configuration
during these experiments involved the following components
and configurations:

e The client application and QUIC proxy 1 are imple-
mented on a single terminal as the client. The communi-
cation between the client application and QUIC Proxy 1
uses a loopback address.

¢ The OpenFlow switch, OpenFlow Controller, and QUIC
proxy 2 are implemented on a single terminal as the
proxy. In addition, the OpenFlow switch and QUIC
proxy 2 run in different namespaces. The namespace is
a mechanism for creating virtual nodes and using virtual
NICs to communicate with a host.

e Open vSwitch is used as the OpenFlow switch, and
Ryu is used as the OpenFlow controller. The OpenFlow
controller sends an ARP response to the ARP request
received from the client.

o In the implementation of QUIC, picoquic written in the C
language is used. This is because picoquic can use BBR
as a congestion control algorithm.

In addition, the network of TCP, as shown in Figure 7, is
compared with the performance of QUIC. Linux implements
MPTCP with multihomed support for TCP. However, MPTCP
implemented in Linux does not have a scheduler to bicast
only the server side, so TCP also performs bicast by using
the OpenFlow switch on the server side. Also, unlike QUIC,
TCP requires the same IP address for incoming packets, so
the OpenFlow switch is used on the client side to change the
source IP address of packets from the server. For TCP, CUBIC
is configured as the congestion control algorithm.

B. Measurement of the communication speed

In this experimental study, we compare communication
speeds between unicast and bicast packets on the server side in
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TABLE IV TABLE VI
BICAST GROUP TABLE IN FIGURE 6 HARDWARE SPECIFICATIONS OF FIGURE 6
Group ID | Type | Action Bucket Client Proxy
src_ip=192.168.11.1 CPU Intel Xeon CPU E31245 Intel Core i7-11700
dst_ MAC=QUIC proxy 1 @ 3.30 GHz @ 2.50 GHz
1 all Output: 1 Memory 4GB x2 DDR3 1333 MHz  8GB DDR4 3200 MHz
a src_ip=192.168.11.2 oS Ubuntu 20.04.6 LTS Ubuntu 20.04.6 LTS
dst_MAC=QUIC proxy 1
Output: 2
30
TABLE V 25
UNICAST FLOW TABLE IN FIGURE 6
20 |
Match fields Instructions =
. dst_MAC=QUIC proxy 1 g
dst_ip=192.168.11.3 Output: 1 5
. dst_MAC=QUIC proxy 2 10
src_ip=192.168.11.3 Output: 3

a multihomed network, using QUIC and TCP. We set specific
network conditions using the Linux Traffic Control (TC) so
that we simulate a wireless network between the client and
proxy, We fix the RTT between the client and proxy to 100
ms to reproduce the actual latency and limit the bandwidth
between the client and proxy to 100Mbps. In addition, we
set the RTT between the proxy and server to 5 ms. To assess
performance, we measure the time required to download a 100
MB file using HTTP communication initiated from the client

Client Serer
Client OpenFlow .<—/'A OpenFlow Server
application switch —~— switch application
—
OpenFlow OpenFlow
controller controller

Fig. 7. Experimental setup with TCP and OpenFlow.

012345678 9101112131415161718192021222324252627282930313233 343536373839
packet loss rate (%)

—QuIC(unicast) —QUIC(bicast) —TCP(unicast) TCP(bicast)

Fig. 8. Unicast and bicast download time in TCP and QUIC.

to the server. We vary the packet loss rate between the client
and proxy as a crucial parameter for the analysis.

Figure 8 shows the time taken to transfer 100 MB of data
from the server to the client when the packet loss rate between
the client and proxy was varied from 0% to 39%.

In TCP, the communication speed decreases to less than
1/3 when the packet loss rate is 1% for unicast and 3% for
bicast. In QUIC, unicast communication consistently demon-
strates highly reliable performance with stable communication
speeds up to a packet loss rate of 11%. However, beyond a
packet loss rate of 11%, the communication speed begins to
reduce. This decrease becomes particularly pronounced when
the packet loss rate exceeds 15%, resulting in a sharp drop
in communication speed to approximately half of the rate
observed at a 0% packet loss rate. In the context of bicast,
our experiments reveal that the communication speed remains
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stable even under relatively higher packet loss rates compared
to unicast. Specifically, we observed stable performance up to
a packet loss rate of 32%.

Bicast is effective in ensuring reliable communication. How-
ever, in this network, duplicating all server side data places
an increased load on the entire network. This load becomes
particularly evident when dealing with substantial volumes of
data. Large data transfers can significantly amplify the network
load, potentially impacting its overall performance. Therefore,
for scenarios with a packet loss rate of up to approximately
15%, unicast is the preferred choice. In cases where the packet
loss rate exceeds 15%, particularly when faced with higher
packet loss rates, bicast is the preferred choice.

V. CONCLUSION

In this study, we successfully implemented a novel multi-
homed network by harnessing the capabilities of QUIC and
SDN. By configuring QUIC with the BBR congestion control
algorithm, we explored the use of both unicast and bicast in
a wireless network prone to packet loss. The results indicate
stable communication with up to a 15% packet loss rate for
unicast and 32% for bicast. In the future, we would like to
develop a scheduler that dynamically switches between unicast
and bicast.
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