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Abstract—Implicit neural representations have emerged as
a transformative approach in machine learning and computer
graphics, enabling the generation and manipulation of intricate
data domains including images, 3D models, and physical simula-
tions. However, scaling INRs to large datasets or high-resolution
signals poses significant challenges due to the exponential growth
of network parameters with input space size. In this study,
we introduce a method based on Levels-of-Experts (LoE) for
implicit neural representations that proves to be more efficient
and promising. We have identified that the activation associated
with LoE results in sharp discontinuities, which in turn diminish
the performance of the implicit neural representations. To tackle
this problem, we substituted the Leaky ReLU activation function
with the Sine activation function, without the need for any
additional initialization schemes. This straightforward yet potent
approach surpasses many previous techniques and is capable of
representing large datasets or high-resolution signals effectively.

Index Terms—Implicit Neural Representations, INR, Levels-
of-Experts,

I. INTRODUCTION

Implicit Neural Representations (INRs) have emerged as a
groundbreaking approach for capturing latent representations
of data spaces without explicitly defining the correlations
between inputs and outputs. Traditional data representation
methods tend to explicitly map these relationships, but INRs
leverage the power of implicit functions, which are highly
adaptable and capable of handling complex, high-dimensional
datasets. These implicit functions eschew the need for a direct
representation of the data’s underlying structure, allowing for
a more fluid and flexible modeling approach. The potential
of INRs in representing complex data spaces is substantial.
They are equipped with the intrinsic ability to comprehend and
represent intricate patterns and correlations within the data,
a feature that has begun to revolutionize various domains of
study and application. The efficiency and adaptability of INRs
are particularly notable when contrasted with more conven-
tional data representation strategies such as point clouds or
voxel grids. These traditional methods often fall short in their
ability to scale or maintain fidelity when dealing with the vast-
ness and complexity of current data requirements. INRs stand
out in their ability to interpolate and extrapolate from known
data points, thus offering a powerful tool for tasks that involve
predictions or reconstructions from incomplete datasets. This
capability makes them especially suited for applications in

fields such as computer vision, where they can be used for
image reconstruction, and in physics, where they assist in
simulating complex systems that are challenging to model
with traditional approaches. Furthermore, the implicit nature of
these representations allows them to capture continuous signals
and surfaces at an arbitrary resolution, which is particularly
beneficial in graphics and 3D modeling. As a result, INRs
have started to pave the way for innovations in rendering,
animation, and the creation of digital environments, wherein
detail and realism are of paramount importance. Moreover,
INRs offer a unique advantage in terms of data compression.
By representing data through continuous functions rather than
discrete samples, they can achieve significant reductions in
the storage space required, all while preserving the fidelity of
the original data. This characteristic is invaluable in the era
of big data, where the ability to efficiently store and process
large volumes of information is critical. As the development
of INRs continues, their integration into diverse applications
signifies a shift towards more efficient and adaptable data
processing techniques. They promise not only to enhance
current methodologies but also to unlock new possibilities in
the handling and understanding of complex data structures.
With their capacity to model high-dimensional spaces and
capture nuanced relationships within the data, INRs are poised
to be a cornerstone technology in the advancement of machine
learning and artificial intelligence.

Nevertheless, there are challenges when it comes to scaling
INRs to accommodate large datasets or high-resolution signals.
This is primarily due to the exponential rise in network param-
eters corresponding to the growth in input space dimensions. In
light of this challenge, Hao et al. [1] presented the Levels-of-
Experts (LoE) framework. This framework arranges network
weights in a hierarchical manner. Within each layer, there
are multiple experts, each possessing a unique weight matrix.
These experts are arranged in a tiling pattern, and responsible
for distinct input space regions. The LoE framework exhibits
several notable advantages over traditional INRs. Firstly, it
achieves improved efficiency by preventing the exponential
growth of parameters with input space size. Secondly, it offers
enhanced flexibility, enabling a wider range of data modeling
capabilities.

However, in the Levels-of-Experts, the activation function
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is non-smooth, leading to the introduction of sharp disconti-
nuities in the INR. This adversely impacts the INR’s perfor-
mance. To mitigate this problem, we substituted the Leaky
ReLU activation function with the Sine activation function.
The Sine function avoids introducing sharp discontinuities
in the INR, enhancing its performance. Additionally, it can
represent a diverse array of shapes and patterns. Consequently,
our method exhibits enhanced accuracy, capturing complex
input-output relationships more effectively than the original
Levels-of-Experts (LoE) framework.

II. RELATED WORKS

Implicit Neural Representations (INRs) have recently risen
to prominence as a robust mechanism for depicting and mod-
eling intricate signals. INRs are designed to learn a continuous
function that bridges input coordinates to corresponding output
values. This unique capability enables efficient querying at any
position within the input domain, making INRs versatile for a
plethora of tasks such as signal fitting [2], novel view synthesis
[3], and generative modeling [4].

Sitzmann et al. [5] suggest the use of periodic activation
functions, like sine and cosine, to address the limitations
associated with coordinate-based MLPs. Periodic activation
functions offer numerous advantages over conventional acti-
vation functions, such as ReLU, especially in the context of
INR tasks. However, the constrained encoding size curtails the
overall representational capability of the model.

In another study, Sitzmann et al. [6] unveil a novel neural
network architecture for neural representations, termed Adap-
tive Coordinate Networks (ACORNs). ACORNs are specif-
ically crafted to surmount the inherent challenges posed by
traditional coordinate networks, which include computational
inefficiency and the struggle to represent intricate signals with
high precision. The unique strength of ACORNs stems from
their hybrid design, merging implicit and explicit network
architectures.

Furthermore, Lindell et al. [7] present the Band-limited
Coordinate Networks (BACON). This innovative network ar-
chitecture is aimed at addressing the existing limitations of the
preceding models. One of the standout features of BACON
networks is their analytical Fourier spectrum. This allows
for easy analysis and prediction of their behavior. Moreover,
BACON networks are adept at representing signals across
various scales without necessitating direct supervision.

Nevertheless, coordinate-based MLPs are not without their
shortcomings. Primarily, their efficacy is bound by the model’s
parameter count. Furthermore, they can prove to be compu-
tationally demanding, particularly when dealing with high-
resolution signals. Recognizing these constraints, recent stud-
ies have ventured into the domain of hybrid INR representa-
tions. These hybrids amalgamate coordinate-based MLPs with
alternative representation modalities, such as sparse voxels
[8] or Fourier harmonics [9]. While hybrid INRs have the
potential to outpace coordinate-based MLPs in both capacity
and efficiency, they might introduce added intricacies in terms
of implementation and training.

III. METHODOLOGY

A typical coordinate-based multi-layer perceptron (MLP) is
constructed as a sequence of layers, which can be mathemat-
ically represented as:

f : p → (gk ◦ gk−1 ◦ · · · ◦ g1 ◦ γ)(p), (1)

In this representation, p denotes the input coordinate at which
the MLP is assessed. The function γ corresponds to an input
mapping, similar to the sine-cosine positional encoding. The
term ϕ symbolizes a non-linear activation function. Further-
more, gi : x → W ix + bi designates the i-th linear layer,
which performs a transformation on the input using a weight
matrix W i and a bias vector bi. As training progresses, both
W i and bi are adjusted through gradient descent to make the
MLP better fit the data. In the context of the Levels-of-Experts

Fig. 1. Each linear layer possesses multiple sets of weights, organized in
a repetitive grid pattern. Given an input, P, the weight selection for each
layer is contingent upon the position where P is situated on the grid. To
optimize performance, varying grid scales are employed for distinct layers.
Figure adapted from [1].

(LoE) model shown in Figure.1, each W i is not just viewed as
a singular matrix that can be learned. Rather, its complexity is
defined as a function, ψi(.), dependent on the input coordinate
p. This concept leads to the creation of a dynamic-weight
linear layer, articulated as hi : (x, p) → ψi(p)x + bi. Here,
x refers to the layer’s inputs, and p determines the position
where the MLP is evaluated. By replacing the traditional linear
layers gi in the MLP with these dynamic-weight layers hi, the
MLP evolves to have input-dependent weights:

f : p → (hk ◦ ϕ ◦ hk−1 ◦ · · · ◦ ϕ ◦ h1 ◦ γ)(p). (2)

Given the fact that the resulting weight matrix, which
is position-dependent, has dimensions much larger than its
input and output vectors, and considering it will be assessed
at numerous query points, it’s imperative that the weight
generation functions, ψi(p), remain efficient, economical, and
expressive. This need eliminates the feasibility of widely
used weight-prediction networks found in hypernetwork-based
methods, where predicting a high-dimensional weight for each
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position becomes a requirement. Instead, a simpler and more
effective method based on coordinate interpolation is adopted.
This involves storing multiple potential values for the weight
matrix within a systematic grid (or tile) and performing cyclic
interpolation contingent on the input coordinates.

Consider a situation where a grid is populated with N
matrices W i

0, . . . ,W
i
N−1. Here, i denotes the depth of the

layer, and N is a non-negative integer. This model is primarily
geared towards scenarios where N > 1, given that N = 1
reverts to the traditional positive integer MLP configuration.
For a 1D coordinate expressed as p = (p), the weight of layer
i that depends on the input, W i, is formulated as:

W i = ψi(p) =

N−1∑
j=0

Bj,N (αip+ βi)W i
j , (3)

Within this equation, αi and βi act as hyperparameters that
adjust the grid’s scale and offset for each layer, respectively.
Concurrently, Bj,N functions as the blending algorithm that
calculates the blending coefficient for the j-th matrix candi-
date. This coefficient can be represented in multiple ways.

IV. EXPERIMENTAL SETUPS

In our experiments, we assessed the best two hierarchical
arrangements of weight grids from Levels-of-Experts (LoE),
including Fine to Coarse and Quad Tree configurations. We
used the ”camera” test image from the scikit-image Python
package as a reference for our test [10]. This ”camera” image
is a grayscale picture with dimensions of 512 x 512 pixels.

In all of our experiments, we employed a 10-layer network
with 64 hidden channels. The architecture comprises nine
position-dependent linear layers, sequentially labeled from 1
to 9, and concludes with a final linear layer. Each of these
position-dependent layers utilizes a 2 × 2 weight tile. For
the Levels-of-Experts (LoE) layers, we selected the Leaky
ReLU activation function with a negative slope of 0.2. For
our specific configuration, we chose the sine activation func-
tion and refrained from introducing any unique initialization
techniques. Notably, aspects like layers, hidden channels, and
tiles remained consistent throughout all the experiments.

V. RESULTS AND ANALYSIS

In this study, two grid patterns were analyzed using a
novel Sine Activation method, which demonstrated superior
performance in terms of Peak Signal-to-Noise Ratio (PSNR)
values when compared to the baseline Leaky ReLU activation.
The comparison is visually represented in Figure 2, where the
Sine Activation method not only achieves higher PSNR values
but also requires fewer training iterations to do so. The specific
improvement curve for the Sine Activation is detailed in Figure
3, showcasing the efficiency of this method in reaching optimal
PSNR values swiftly and the detailed specific curve for (LoE)
Leaky ReLU Activation is shown in Figure 4

Further empirical evidence of the Sine Activation method’s
performance is found in Table I, which presents a comparative
analysis of different hierarchical grid patterns. Notably, the

Fig. 2. PSNR vs training iterations curve for Sine Activation and (LoE) Leaky
ReLU Activation

Fig. 3. PSNR vs training iterations curve for Sine Activation

Fig. 4. PSNR vs training iterations curve for (LoE) Leaky ReLU Activation
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TABLE I
COMPARISON OF DIFFERENT HIERARCHICAL ARRANGEMENTS OF GRID

PATTERN IN PSNR

Grid Pattern Peak PSNR
Fine to Coarse 34.26

Quad Tree 33.46
Sine Fine to Coarse 39.05

Sine Quad Tree 35.33

traditional ’Fine to Coarse’ grid pattern peaked at a PSNR
value of 34.26, whereas the same pattern utilizing the Sine
Activation method markedly improved the peak PSNR to
an impressive 39.05. Additionally, the ’Quad Tree’ pattern
exhibited a peak PSNR of 33.46 with the baseline activation,
but with the Sine Activation, this value was enhanced to 35.33.

This significant increase in PSNR with the Sine Activation
method underscores its potential for enhancing image quality
and training efficiency. Such improvements suggest that the
Sine Activation method can be a powerful tool in the optimiza-
tion of neural networks, particularly for tasks involving image
processing where PSNR is a critical measure of performance.

VI. CONCLUSION

For various hierarchical arrangements of weight grids, the
activation using the Sine method often requires integration
with specific initialization procedures, which demand more
multiply-accumulate operations (MACs). However, in our ap-
proach, we abstained from using any specialized initialization
methods. This constraint potentially limited the accuracy of
our method for certain grid patterns. In future research, we
aim to identify a more precise activation function that can
seamlessly operate with all grid pattern types.
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