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Abstract—Emotions are an integral part of human communica-
tion and interaction, significantly shaping our social connections,
decision-making, and overall well-being. Understanding and ana-
lyzing emotions have become essential in various fields, including
psychology, human-computer interaction, marketing, and health-
care. The previous approach has indeed made significant strides
in improving the accuracy of predicting emotions within speech.
However, the current model’s performance still falls short when
it comes to real-life applications. This limitation arises due to
several factors such as lack of context, ambiguity in speech
and meaning, and other contributing elements. To reduce the
ambiguity of emotions within speech, this paper seeks to leverage
multiple data modalities, specifically textual and acoustic infor-
mation. To analyze these modalities, we propose a novel approach
called MERSA which utilizes the self-align method to extract
context features from both textual and acoustic information.
By leveraging this technique, the MERSA model can effectively
create fusion feature vectors of the multiple inputs, facilitating
a more accurate and holistic analysis of emotions within speech.
Moreover, the MERSA model has incorporated a cross-attention
module into its network architecture, which enables the MERSA
model to capture and leverage the interdependencies between the
textual and acoustic modalities.

Index Terms—speech emotion recognition, multimodal emotion
recognition, self-align embedding, cross-modality attention

I. INTRODUCTION

Traditional studies of emotion analysis primarily relied on
verbal expressions, facial cues, and physiological responses
as indicators of emotional states. However, humans convey
emotions through multiple channels simultaneously, including
speech acoustic, the content of speech, facial expressions,
and body language. This multifaceted nature of emotional
expression has led to the emergence of Speech Emotion
Recognition (SER) and Multimodal Emotion Recognition as
potential fields of research.

In the early days of sentiment analysis, rule-based ap-
proaches were predominant. These approaches relied on man-
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ually crafted rules and heuristics to identify sentiment in text.
Research during this phase focused on developing lexicons
and dictionaries of sentiment-bearing words, assigning polarity
(positive, negative, or neutral) to these words, and using rules
to determine sentiment based on word patterns. SER then
transitioned from rule-based approaches to machine learning-
based methods. This shift allowed for the development of
more sophisticated and accurate emotion recognition systems
that could learn patterns and features directly from data
rather than relying on manually crafted rules. Research during
this phase focused on the application of machine learning
algorithms for sentiment classification. With the emergence of
deep learning, the SER witnessed a significant advancement.
Deep neural networks, particularly Recurrent Neural Networks
(RNNs) and Convolutional Neural Networks (CNNs), began
to dominate emotion recognition tasks. Researchers explored
the application of RNNs for sequential data, while CNNs
were employed for sentiment analysis using convolutional
layers to capture local patterns in text or images. Furthermore,
researchers began exploring the multimodal method, which
involved the fusion of text, audio, and visual data to obtain
a more holistic understanding of sentiment. Crossmodal Fu-
sion [1] extends the idea of multimodal fusion by transferring
knowledge or representations learned from one modality to
another. It leverages information from one modality to improve
performance in another modality. Crossmodal fusion can be
particularly useful when one modality has more labeled data
or is easier to work with than others. It can help improve
the performance of emotion recognition or sentiment anal-
ysis in modalities with limited data. The main challenge in
crossmodal fusion is ensuring that the transferred knowledge
is relevant and beneficial for the target modality. It requires
careful consideration of feature representations and adaptation
techniques.

While previous studies have shown significant advance-
ments, many often overlook inadequately incorporated mul-
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tiple modalities and capture their relation. In 2023, a method
called SERVER [2] proposed a strategy to improve the SER
model by utilizing both audio and text features. However,
SERVER simply concatenates these different types of informa-
tion together without considering how they are related, which
is an important aspect of multimodal analysis. On the other
hand, 3M-SER [3] attempted to address the interrelationships
among different information by incorporating an attention
mechanism and achieved good results. However, 3M-SER still
has limitations in its feature extraction strategy. Both SERVER
and 3M-SER may introduce additional errors because of the
inherent errors in each type of feature and the differences
between them.

To address this problem, our research introduces the
MERSA model which incorporates self-align embeddings [4]
into the feature extractor to fine-tune the text features. Addi-
tionally, we employ cross-attention [5] to effectively combine
the audio and text features for improved performance. Our
primary contributions cover the following three main aspects:

1) We adapt the cross-attention for multimodal emotion
recognition tasks by effectively aligning and fusing
information from different modalities.

2) We integrate the self-align embeddings methodology
into the BERT-base model. This approach involves trans-
ferring knowledge from the other field to the SER field,
enabling better representation of learning for SER tasks.

3) We conduct a comprehensive assessment and compar-
ison of various models on two well-known datasets:
IEMOCAP and MELD. By evaluating the performance
of the MERSA model and other models, we gain insights
into the effectiveness of our proposed approach over
existing methods in emotion recognition tasks.

The rest of this paper is structured as follows. The related
work is presented in Section II. The datasets and methodology
of our model are presented in Sections III and IV, respectively.
In Section V, the preliminary results are displayed and ana-
lyzed. Finally, the conclusion and potential future work are
concluded and listed in Section VI.

II. RELATED WORKS

A. Audio features
Google in 2017 developed a novel approach employing

CNN to transform audio signals into a latent space repre-
sentation called VGGish [6]. VGGish utilizes the log Mel-
Spectrogram derived from audio input to extract audio features
with each second of an audio file will be transformed into
an image of a log Mel-Spectrogram, and then the VGGish
networks are applied to serve as a feature extractor. Another
approach for audio embeddings is Wav2Vec [7]. Wav2Vec
creates speech representations by performing a context pre-
diction task. It utilizes autoencoding to identify discrete units
and also learns continuous speech representations through self-
supervised context prediction tasks. This method demonstrates
the power of self-supervised learning in extracting valuable
features from audio data, without the need for labeled datasets.
It is particularly effective even with very short audio files.

B. Text features

Bidirectional Encoder Representations from Transformers
(BERT) [8] is a unique model known for its bidirectional
nature, allowing it to consider both the preceding and fol-
lowing context of a word in a sentence. It is built upon the
transformer architecture [9], which utilizes a self-attention
mechanism to determine the importance of different words
in a sentence relative to a given word. BERT is pre-trained
on a large dataset of text, allowing it to learn contextual
feature vectors for words and sentences. BERT is pre-trained
on a large dataset of text, allowing it to learn contextual
feature vectors for words and sentences. Thus, BERT and its
variation are the most used to get the textual embedding for
the Emotion Recognition task. One notable BERT variation is
SapBERT [4] which incorporates self-align embedding in its
architecture. SapBERT introduces a custom loss function to
align the representation space of biomedical entities, making
it a state-of-the-art model in the medical domain. The use of
self-align can be broadened to any field that requires adjusting
feature vectors.

C. Multimodel speech emotion recognition

In the field of SER, recent research has made signifi-
cant advancements. In 2023, a multimodal approach called
SERVER [2] combines the audio feature and text feature using
BERT and VGGish-based respectively. This fusion of audio
and text features allows the model to gain deeper insights
from multiple input data, leading to improved performance.
SERVER demonstrated its competitiveness by outperform-
ing many previous methods in multimodal SER. However,
SERVER had a limitation as it simply concatenated the audio
and text features without considering their interdependen-
cies. To address this issue, a subsequent method called 3M-
SER [3] was proposed. 3M-SER introduced a fusion module
that employs a self-attention mechanism [9] to analyze the
relationships between audio and text features. By captur-
ing the relevant connections between these modalities, 3M-
SER achieved remarkable performance compared to previous
approaches in multimodal SER. Another approach in SER
is MMER [10] which uses multi-head attention fusion and
multi-feature embeddings. MMER introduces the crossmodal
encoder which can achieve over 80% of both weighted and
unweighted accuracy when evaluating on IEMOCAP [11]
dataset.

III. DATASETS

A. IEMOCAP

The Interactive Emotional Dynamic Motion Capture
(IEMOCAP) [11] dataset, introduced in 2008, is a valuable
resource for studying speech emotions. It is available in
the English language and was recorded at the University of
Southern California. The corpus features were recorded by
10 professional actors and divided into five separate sessions.
Each session involves both a male and a female actor. The
IEMOCAP dataset consists of audio-visual files, with each
file spanning approximately 12 hours in length. The recorded
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utterances, on average, have a duration of around 3.5 seconds.
The dataset covers a range of different emotions, making it
suitable for various emotion recognition studies.

TABLE I: The contributions of six major emotions in the
IEMOCAP dataset.

Emotion Number of samples Distribution
Neutral 1849 25.05%

Frustrated 1708 23.14%
Sad 1103 14.95%

Anger 1084 14.69%
Excited 1041 14.11%
Happy 595 8.06%

In this study, we evaluate our method on two scenarios:
a 4-class and a 6-class emotions classification task, utilizing
the emotions present in the IEMOCAP dataset. Table I
gives details of the speech emotions, audio file quantity, and
contribution rate of each emotion which are used in this study.
In our evaluation, we focused on four major classes, namely
neutral, sad, anger, and happy, to assess the effectiveness of our
method for the 4-class emotions classification task, in which
happy and excited is grouped together as happy. For the 6-
class emotion classification task, we utilized all the emotions
listed in Table I to train and evaluate our model.

B. MELD

The Multimodal EmotionLines Dataset (MELD) [12] is
an expanded and enriched version of the EmotionLines [13]
dataset. MELD includes the same conversational exchanges
found in EmotionLines, but it incorporates multiple modalities,
encompassing audio, visual, and text data. MELD comprises
over 1,400 dialogues and 13,000 individual utterances ex-
tracted from TV series, featuring contributions from various
speakers. Each utterance within a conversation has been as-
signed one of seven distinct emotional labels, which include
Anger, Disgust, Sadness, Joy, Neutral, Surprise, and Fear.
The distribution of these emotion categories can be found in
Table II. The same approach of selecting emotions for the
4-class evaluations is also applied to the MELD dataset. To
provide consistency across two datasets, we map emotions in
MELD accordingly to emotions in IEMOCAP, namely joy is
mapped to happy, sadness to sad, and anger to anger. As a
result, the 4-class emotion for MELD is now neutral, sad,
anger, and happy, which is similar to IEMOCAP.

TABLE II: The contributions of six major emotions in the
MELD dataset.

Emotion Number of Samples Distribution
Neutral 4710 47.15%

Joy 1743 17.45%
Surprise 1205 12.06%
Anger 1109 11.10%

Sadness 683 6.84%
Disgust 271 2.71%

Fear 268 2.68%

IV. PROPOSED METHOD

To help the model gain insight into feature representation
in latent space, we have developed a model called MERSA
which combines information from both audio and text inputs
to effectively tackle the emotion recognition task. To extract
features for the text input, we have created our custom pre-
trained model called self-align BERT embedding. This model
captures important textual information related to emotions by
combining BERT [8] with self-align embedding [4]. For the
audio input, we utilize either VGGish or Wav2Vec feature
extractors to obtain acoustic feature vectors. These feature
vectors capture relevant acoustic information associated with
emotions. To integrate the information from both modalities,
we employ a cross-attention fusion module. This module
enables us to capture rich and meaningful information between
the text and audio inputs, enhancing the overall emotion recog-
nition capability of the model. Fig. 1 provides an overview of
the working process of the MERSA model, illustrating how
the different components interact and contribute to the model’s
performance.

Fig. 1: The proposed flowchart of MERSA model.

A. Self-Align Embedding

Inspired by SapBERT [4], we designed a framework to self-
align textual feature vectors using BERT-based [8] as the foun-
dation. The self-alignment method is a learning method geared
towards learning effective feature vectors (or representations)
of emotion data in a way that captures the underlying structure
and relationships among the samples and the emotions. Our
research applies Multi-similarity loss [14], which is a con-
cept derived from metric learning. The Multi-similarity loss
technique focuses on minimizing intra-class variances while
maximizing inter-class margins, which enables the model to
self-align textual feature vectors as a pre-processing method
for the proposed MERSA model. In the context of feature
vectors, it involves adjusting the distances between feature
vectors such that similar vectors are brought closer, and
dissimilar ones are pushed apart in the latent space. This
loss function is particularly effective in scenarios where the
relationships within the data are complex and multi-faceted.
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Fig. 2: Illustration of multi-similarity loss [14]

Fig. 2 visualizes the concept of the Multi-similarity loss
function (LMS) which has the formula as follows:

LMS =
1

m

m∑
i=1

[
1

α
log

(
1 +

∑
k∈Pi

e−α(Sik−λ)

)

+
1

β
log

(
1 +

∑
k∈Ni

eβ(Sik−λ)

)] (1)

where m is the number of training samples or pairs in the
batch, used to compute the average loss, Pi represents a set
of positive pairs for the ith sample, pairs of data points that
are similar or related, Ni represents a set of negative pairs
for the ith sample, consisting of dissimilar or unrelated data
points. Sik is the similarity score between the ith and kth

samples, measuring their similarity. λ is the margin parameter
defining the boundary between positive and negative pairs, α
and β are the scaling parameters for the exponential functions,
controlling the change in pair contributions to the loss with
their relative similarities.

This technique offers a sophisticated means to enhance the
representational capacity of models, ensuring that the feature
vectors accurately reflect the inherent similarities and differ-
ences within the data. The terms e−α(Sik−λ) and eβ(Sik−λ) are
used to compute the weights for positive and negative pairs,
respectively. The exponential function ensures that pairs with
higher similarity (for positive pairs) or lower similarity (for
negative pairs) relative to the margin λ are given more weight.
The logarithm is applied to the sum of the exponential terms
to stabilize the training and prevent numerical issues due to
the potentially large range of the exponential function. The
loss is computed by summing over all the training samples in
the mini-batch and then averaging the sum.

B. Self-Attention and Cross-Attention Module

Our self-attention module uses a multi-head attention [9]
block to determine which features in the text and audio
feature vectors are relevant to the classification process. This
block also aligns the dimensions of text feature vectors with
audio feature vectors through a linear transformation and
LayerNorm [15]. A multi-head attention module is composed
of multiple single-head attention modules that are stacked
together. Each head operates independently but in parallel,
allowing the model to capture different aspects of the input and

enhance its representational capacity. The formula of single-
head attention is as follows:

Headself = Attention(Qself ,Kself , Vself )

= Softmax(
QselfK

T
self√

dk
)Vself

(2)

where Qself ,Kself , and Vself represent the query, key, and
value respectively in a single-head, and dk represents the fea-
ture dimension of the key. The attention mechanism calculates
Headself which is a weighted sum of the values Vself based
on the similarity between the query Qself and the key Kself .
The weighted sum is parameterized by the attention weights
obtained from applying the softmax function on the similarity
by the dot product of Qself and Kself divided by the square
root of dk.

Since the original feature values of text and audio may
have significant differences due to their respective extraction
models, we apply a LayerNorm [15] to both the audio and
text feature vectors. This normalization brings the values
of text and audio closer together, ensuring fairness in their
contribution to the final model. This research also incorporates
and experiments with an advanced cross-attention module
into the MERSA model as shown in Fig. 1. The proposed
cross-attention architecture diverges from the traditional self-
attention mechanism, predominantly by varying the input
feature vectors for the query (Q), key (K), and value (V )
components. In this architecture, the text feature vectors are
utilized as inputs for the query component, while the audio
feature vectors are employed for both the key and value
components. This process is then inverted, wherein the audio
feature vectors are used for the query, and text feature vectors
are utilized for the key and value. Such an approach allows
for a more intricate interplay between the modalities and
potentially enhances the recognition accuracy of complex
emotional states. The formula for the text-audio cross-attention
CrossAtttext−audio is as follows:

CrossAtttext−audio = Attention(Qtext,Kaudio, Vaudio)
(3)

And the formula for the audio-text cross-attention
CrossAttaudio−text is as follows:

CrossAttaudio−text = Attention(Qaudio,Ktext, Vtext) (4)

We combine both crossmodel attention and self-attention
architecture as Fig. 1. While the self-attention module helps
each modality capture the intra-connection information in
itself, the cross-attention mechanism helps capture the rela-
tionships between textual and audio information, allowing the
model to attend to relevant features from both modalities in a
coordinated approach.

V. EXPERIMENTAL RESULT AND DISCUSSION

A. Experimental Setup

Our research focuses on two primary datasets: MELD and
IEMOCAP. For the MELD dataset, we train our models to
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classify emotions into 4-class categories. Similarly, for the
IEMOCAP dataset, we conduct training for emotion clas-
sification into 4-class and 6-class categories. We begin by
evaluating a baseline model to establish a foundational per-
formance metric. Following this, we incrementally introduce
additional modules to observe their respective contributions
to the model’s effectiveness. The progression of our exper-
imental setup is as follows: First, we introduce a baseline
model inspired by SERVER [2], then integrate the Multi-
head Attention module to a multimodal model similar to the
approach shown in 3M-SER [3]. Next, we introduced our
self-align technique textual feature vectors. The audio feature
vectors method is tested with both VGGish and Wav2Vec. Our
final model includes the incorporation of the Cross Modality
Attention Module, which is expected to effectively synthesize
data from both textual and acoustic modality better. Regarding
our training model, we have opted for a batch size of 1.
This decision is primarily driven by the variable length of
audio feature vectors corresponding to each sentence in a
conversation. Utilizing a uniform batch size would necessitate
padding, which could potentially reduce the model’s accuracy
due to the non-informative data. By adopting a batch size of
1, we ensure that each input is processed in its original form,
thereby maintaining the integrity of the data and enhancing the
model’s performance. The other settings follow the original
settings in SERVER and 3M-SER to train and evaluate the
model.

(a) BERT-base (b) BERT-base with self-align
embeddings

Fig. 3: T-SNE plot of BERT-base and BERT-base with self-
align embeddings

B. Self-align embeddings

To improve the performance of BERT-base [8] extractor, we
integrate self-align textual embeddings into BERT-base archi-
tecture. Fig. 3 visualizes the T-SNE plot of BERT-base and
BERT-base with self-align embeddings, which shows signifi-
cant improvement in terms of sample distribution and repre-
sentation. Although similar vector features are closer together,
there is still overlap between different emotion categories. This
overlap occurs when we visualize high-dimensional data using
dimensionality reduction methods, some information may be
lost. Nevertheless, based on T-SNE visualization, integrating
self-align textual embeddings into the BERT-base enables the

model to generate better feature vectors in the latent space.
With this approach, the model can converse faster as well as
improve the performance of the fusion module when used in
the multimodal architecture.

C. Experiment results

To compare different models, we focused on training the
model using only four main classes as mentioned in dataset
section: anger, happy, sad, and neutral. We divided our dataset
into the train, validation, and test sets using a ratio of 8:1:1.
During the training phase, we applied the early stopping
strategy to prevent overfitting on the training dataset.

TABLE III: Performance comparison of models training on
IEMOCAP (4 emotions)

Model Method Accuracy F1
SERVER [2] VGGish and BERT 0.616 0.612

SERVER modified Wav2Vec and BERT 0.604 0.622
3M-SER [3] VGGish and BERT 0.751 0.745

3M-SER modified Wav2Vec and BERT 0.777 0.784
MERSA (Ours) VGGish and BERT self-align 0.770 0.764

MERSA (Ours) VGGish and BERT self-align
with cross-attention 0.805 0.791

MERSA (Ours) Wav2Vec and BERT self-align 0.783 0.799

MERSA (Ours) Wav2Vec and BERT self-align
with cross-attention 0.779 0.764

In our experiments, we evaluated two common mod-
els that are utilized for audio processing: VGGish [6]
and Wav2Vec [7]. To compare the MERSA model with
SERVER [2] and 3M-SER [3] using Wav2Vec, we replaced
the VGGish backbone in both models with Wav2Vec, resulting
in a modified version of the architecture as shown in Table III,
which presents the performance comparison of various mod-
els on the IEMOCAP dataset. In which both cross-attention
and self-align show a performance improvement compared
to the previous methods. Specifically, the MERSA model,
incorporating self-align, achieves the highest scores with an
accuracy of 0.805 and an F1 score of 0.799. This once again
demonstrates the effectiveness of using self-align embeddings
to enhance the model’s performance on the SER tasks. Addi-
tionally, when cross-attention is applied to the MERSA model
with VGGish as an audio extractor, there is an improvement
in the model’s accuracy and F1 score compared to previous
methods. However, interestingly, when we use Wav2Vec as
the audio extractor instead, the performance of the MERSA
model becomes worse than not using any cross-attention at all.
The reasons behind this discrepancy can be related to limited
discriminative information. The features extracted by Wav2Vec
may not capture sufficient discriminative information for the
specific task being performed. The representations learned by
VGGish may be more suitable and task-specific, leading to
better performance when used in conjunction with the cross-
attention mechanism. In our experiments, we only focus on
fine-tuning the textual model and using the pre-trained audio
processing models without considering its feature vectors in
latent space. In the future, the problem related to audio feature
vectors will be considered to further improve the performance
of multimodal models.
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TABLE IV: Performance comparison of models training on
IEMOCAP (6 emotions)

Model Method Accuracy F1
SERVER [2] VGGish and BERT 0.535 0.478

SERVER modified Wav2Vec and BERT 0.521 0.502
3M-SER [3] VGGish and BERT 0.586 0.577

3M-SER modified Wav2Vec and BERT 0.595 0.584
MERSA (Ours) VGGish and BERT self-align 0.644 0.621

MERSA (Ours) VGGish and BERT self-align
with cross-attention 0.669 0.653

MERSA (Ours) Wav2Vec and BERT self-align 0.671 0.655

MERSA (Ours) Wav2Vec and BERT self-align
with cross-attention 0.676 0.646

We also trained and evaluated it on the 6-class IEMOCAP
dataset, as displayed in Table IV. Once again, the MERSA
model with self-align embeddings achieved the highest scores
among all methods in terms of F1 score even with the increase
in the number of classes. While MERSA model with a cross-
attention model performs slightly better in accuracy compared
to using only self-attention module, this outcome still strongly
affirms that both self-align embeddings and cross-attention can
effectively enhance the feature vectors for multimodal models.

TABLE V: Performance comparison of models training on
MELD (4 emotions)

Model Method Accuracy F1
SERVER [2] VGGish and BERT 0.562 0.424

SERVER modified Wav2Vec and BERT 0.5851 0.592
3M-SER [3] VGGish and BERT 0.637 0.509

3M-SER modified Wav2Vec and BERT 0.653 0.627
MERSA (Ours) VGGish and BERT self-align 0.665 0.602

MERSA (Ours) VGGish and BERT self-align
with cross-attention 0.661 0.612

MERSA (Ours) Wav2Vec and BERT self-Align 0.677 0.634

MERSA (Ours) Wav2Vec and BERT self-align
with cross-attention 0.672 0.641

To further evaluate the performance of the MERSA model,
we tested on the MELD dataset and the results are shown
in Table V, we present the performance comparison between
our method and previous studies on the MELD dataset. Once
again, our MERSA model shows an improvement over previ-
ous architectures and achieved the highest performance with
an accuracy of 0.677 and an F1 score of 0.634.

VI. CONCLUSION

In this paper, a multimodal architecture has been pro-
posed to improve the performance of multimodal SER named
MERSA. MERSA model enhances the fusion feature vectors
of text and audio by leveraging the self-align embeddings
and cross-attention module. The experimental results have
shown that the MERSA model improved the performance of
the previous multimodal model, which achieved the highest
scores compared to the previous study. The implementation of
the self-align technique consistently improved upon existing
models. It yielded a substantial increase in both accuracy and
F1 score. However, this method also presented challenges,
such as the potential for overfitting in certain high-performance
models and a reduction in inference time. The addition of

the cross-attention module shows mixed results, the minor
improvement in benchmark score does not seem to justify the
increase in computing resource cost. This outcome suggests
the need for further optimization in audio feature vectors to
incorporate the cross-attention module into MERSA.
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