
Backdoor Trigger Detection Using Adversarial
Perturbation for Deep-learning Phishing Detector

Koko Nishiura∗, Tomotaka Kimura∗, and Jun Cheng∗
∗Graduate School of Science and Engineering, Doshisha University, Kyoto, Japan

Email: tomkimur@mail.doshisha.ac.jp; jcheng@ieee.org

Abstract—In this paper, we propose a backdoor trigger-
detection method using an adversarial perturbation for deep-
learning phishing detectors. Recently, backdoor attacks have
become a serious threat to deep-learning–based detectors. To
counter backdoor attacks, the proposed method uses the ad-
versarial perturbation generated by the universal adversarial
perturbation method. Using this approach, the proposed method
is not only able to detects backdoor attacks, but can also detect
the location where the trigger has been inserted. Therefore, once
we have several URLs containing the trigger, we can identify the
triggers themselves, allowing the attacker’s characteristics to be
analyzed. Through experiments using a dataset of phishing site
URLs, we show that the proposed method can counter backdoor
attacks.

Index Terms—Adversarial perturbation, Backdoor attack,
Phishing detection

I. INTRODUCTION

Recently, phishing scams have become a major threat [1]
and cause of financial damage. Specifically, phishing scams
are attempts to steal personal information through phishing
websites that mimic legitimate websites. As a countermea-
sure against phishing scams, deep-learning–based phishing
detection methods have attracted attention because of their
high performance [2]. However, to construct a highly accurate
detector, a large amount of data must be used for training, and
the computational resources required for such processing are
significant.

To solve the problem of the computational resources, learn-
ing outsourcing services have emerged that can train the deep-
learning detector on their cloud servers. Vendors providing
such services are called learning providers. Learning providers
can create deep-learning models at a low cost using their cloud
servers, which solves the problem of inadequate computational
resources. However, vulnerable deep-learning models may be
intentionally provided because the learning is performed by a
third-party vendor.

An attack that learning providers can launch is a backdoor
attack [3] (Fig. 1). In a backdoor attack, when training a
machine-learning model, the learning provider with malicious
intent adds poisoned data containing triggers to the data sent
by the customer. The trained machine-learning model is then
sent to the customer. The customers do not know that training
took place using poisoned data, and hence they do not suspect
that a backdoor attack has been set up and they trust this
model. However, traps have been set in this model so that
poisoned data trigger them and cause misclassification.

Fig. 1: Backdoor Attacks during Outsourcing.

To date, a countermeasure against backdoor attacks has
been proposed [4]. In [4], a backdoor attack is detected by
using the characteristic that the class of a backdoor attack
instance does not change even if a slight perturbation is
injected. Specifically, an adversarial perturbation is calculated
in advance and the change in the class is examined when the
adversarial perturbation is injected. In [4], the effectiveness
of this adversarial perturbation was demonstrated for image
processing.

In this paper, we propose an adversarial perturbation-based
trigger-detection method for a phishing website detector. The
proposed method not only detects backdoor attacks, but also
the location where the trigger has been inserted. Therefore,
once we have several URLs (Uniform Resource Locator) con-
taining the trigger, we can identify the triggers themselves and
hence analyze the attacker’s characteristics. Through experi-
ments using a dataset of phishing site URLs, we demonstrate
that the proposed method can counter backdoor attacks.

The rest of the paper is organized as follows: In section II,
we describe our proposed trigger detection method. Next,
we evaluate the performance of our proposed method in
section III. Finally, in section IV, we conclude the paper.

II. PROPOSED TRIGGER DETECTION METHOD

Figure 2 shows an overview of the proposed trigger-
detection method. In the proposed method, when the trigger
is embedded into a URL, the trigger is extracted from the
URL using an adversarial example technique, i.e., the UAP
(Universal Adversarial Perturbations) method [5]. UAP finds
a perturbation vector v that causes the misclassification of
a discriminator f for a large number of data points. More
specifically, UAP finds a perturbation vector v such that
f(x+ v) and f(v) are different for almost all data points.

509979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

Fig. 2: Overview of Trigger Detection.

In the proposed method, for dataset X , the perturbation
vector v is obtained using UAP, and then the successive k
elements of perturbation vector v are changed to 0 (Fig. 3).
Here, let vn denote the perturbation vector whose nth to
(n+ k− 1)th elements are 0. For vn (n = 1, 2, . . .), C(vn) is
calculated as follows:

C(vn) =

∑
x∈X �(f(x+ vn) = f(x))

|X |
, (1)

where � is the indicator function and |X | is the number
of the elements in dataset X . Moreover, C(vn) represents
the ratio of misclassification that does not occur due to
the perturbation vector vn. The proposed method takes this
approach because changing the value of the part containing
the trigger is likely to cause misidentification to a different
class. In other words, if the part containing the trigger is not
perturbed, misidentification to a different class is less likely
to occur and the value of C(vn) should be high.

To detect the position of the trigger, we calculate the average
µ and standard deviation σ of C(vn) (n = 1, 2, . . .). If C(vn)
is greater than µ + ασ, the proposed method guesses that
the trigger is located at position n, where α is a threshold
parameter.

As for the rationale behind the detection of triggers in
our proposed method, there might be a large distortion in
the model’s decision boundary for the elements at the input
position of the trigger. UAP requires a perturbation vector v
that causes misclassification for every element in X , and the
easiest way to cause a misclassification is to perturb it around
the injected trigger location because the decision boundary
has been forcibly distorted by the trigger injection. Based on
this, the proposed method finds the trigger-injected location
by forcing some of the elements of the perturbation vector to
zero, that is, by removing the perturbation. When elements
match the trigger, the elimination of the perturbation reduces
the misclassification. Therefore, the value of C(vn) increases
when the perturbation of the triggering part is removed.

Fig. 3: Addition of vn.

III. PERFORMANCE EVALUATION

A. Setting

To demonstrate the effectiveness of the proposed trigger-
detection method, we conducted experiments using the dataset
provided in [6], which contains URL data from both phishing
and benign sites. We used 38,272 URLs (16,112 phishing and
22,160 benign URLs) and divided them into two datasets:
a training dataset and verification dataset. The training data
consist of 32,272 URLs (14,912 phishing and 17,360 benign
URLs) and were used to train discriminator f by the learning
provider. By contrast, the verification data consist of 6,000
URLs (1,200 phishing and 4,800 benign URLs) and were used
to verify whether discriminator f is vulnerable to a poison
attack.

In the scenarios we consider in this evaluation, we assume
that the training data are provided to a learning provider. The
learning provider trains discriminator f using its computa-
tional resources. We also assume that the learning provider has
malicious intent and launches a back door attack. Specifically,
the learning provider chooses some URLs from the training
data and embeds the trigger into these URLs. Therefore, the
learning provider trains discriminator f using the training data
and trigger-embedded data. In our experiments, there were two
scenarios depending on the trigger positions. One was inserted
from positions 140 to 145, and the other was inserted from
positions 160 to 165. The trigger was “AAAAAA”.

As discriminator f , we used a four-layer neural network
with an input layer of 200 nodes; the intermediate layer
had two dense layers with 64 and 32 nodes, and the output
layer had two nodes. To input a URL into the discriminator,
the URL was converted into a numeric vector using ASCII
code. Because this vector is of fixed length, if the length
of the URL is short, zero padding was applied. By contrast,
if the length of the URL was larger than 200, the end of
the URL was ignored. After the learning provider trained
the discriminator f , it delivered the discriminator f to the
customer. In the scenarios, when the customer receives the
discriminator f , it checks the accuracy of the discriminator
using the training data. For the training data used in our
experiments, the accuracy of the discriminator was 90.77%. At
first glance, discriminator f performs well because the training
data does not contain trigger data. Therefore, the customer is
unaware that a backdoor attack has been launched, and uses
discriminator f to detect phishing URLs.

510

After the initial evaluation of the discriminator, the customer
collects URLs to be evaluated by the detector to determine
whether a backdoor attack has been launched. In the exper-
iment, half of the phishing URLs (i.e., 600 URLs) in the
verification data were injected with the trigger, and they were
converted into poisoned URLs. We divided the verification
data (600 phishing, 600 poisoned, and 4800 benign URLs)
into 20 datasets Xi (i = 1, 2, . . . , 20). The customer checks
whether there is a backdoor in discriminator f using dataset
Xi. Specifically, the perturbation vector v is calculated for Xi,
and then CUIR (Clean URL Identification Rate) Ci(vn) for
Xi is calculated using (1). The parameter k is set to 6.

As a performance index, we used the mean CUIR C(vn),
which is the average of the 20 datasets. The mean CUIR
C(vn) is calculated as C(vn) = (1/20)

∑20
i=1 Ci(vn). In this

evaluation, the threshold α was set to 3.

B. Results

First, we present the performance of the proposed method
in detecting triggers. Figure 4 shows the mean CUIR C(vn)
as a function of position n. From Figs. 4 (a) and (b), we can
observe that the mean CUIR is larger in the areas where the
trigger has been inserted, i.e., positions 140–145 and 160–
165, respectively. Moreover, the threshold is exceeded only in
the areas where the trigger has been inserted. These results
indicate that the proposed method can detect the presence of
backdoor attacks. Furthermore, the presence of triggers in the
areas above the threshold can also be detected.

Next, we verify whether the proposed method causes false
positives when a backdoor attack has not been launched.
Specifically, we consider the situation in which the learning
provider has no bad intentions and no poisoned URLs are used
to train discriminator g. Figure 5 shows the mean CUIR C(vn)
for discriminator g. In this figure, the mean CUIR is almost
the same for all n, and unlike the results for discriminator f ,
no n exceeds the threshold value. This result confirms that
the proposed method does not falsely detect triggers in the
absence of a backdoor attack.

IV. CONCLUSION

In this paper, we proposed a countermeasure against back-
door attacks for deep-learning–based phishing detectors. Using
an adversarial perturbation, the proposed method detects the
positions of the trigger. Through experiments using a dataset
of phishing site URLs, we demonstrated that the proposed
method can identify the positions of injected triggers.

ACKNOWLEDGMENT

This research was supported by JSPS KAKENHI
(20H04184).

REFERENCES

[1] H. S. Lallie, L. A. Shepherd, J. R. Nurse, A. Erola, G. Epiphaniou,
C. Maple, and X. Bellekens, “Cyber security in the age of covid-19:
A timeline and analysis of cyber-crime and cyber-attacks during the
pandemic,” Computers & security, vol. 105, p. 102248, 2021.

�0.15

�0.2

�0.25

�0.3

�0.35

�0.4

�0 �20 �40 �60 �80 �100 �120 �140 �160 �180 �200

C
U
IR

��
C
(v
n)

position�n

Trigger
Proposed�method

(a) Trigger position: 140-145

�0.15

�0.2

�0.25

�0.3

�0.35

�0.4

�0 �20 �40 �60 �80 �100 �120 �140 �160 �180 �200

C
U
IR

��
C
(v
n)

position�n

Trigger
Proposed�method

(b) Trigger position: 160-165

Fig. 4: Mean CUIR C(vn) for Poisoning Discriminator f .

�0.15

�0.2

�0.25

�0.3

�0.35

�0.4

�0 �20 �40 �60 �80 �100 �120 �140 �160 �180 �200

C
U
IR

��
C
(v
n)

position�n

Trigger
Proposed�method

Fig. 5: Mean CUIR C(vn) for Clean Discriminator g.

[2] A. Basit, M. Zafar, X. Liu, A. R. Javed, Z. Jalil, and K. Kifayat, “A com-
prehensive survey of ai-enabled phishing attacks detection techniques,”
Telecommunication Systems, vol. 76, pp. 139–154, 2021.

[3] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7, pp.
47 230–47 244, 2019.

[4] M. Xue, Y. Wu, Z. Wu, Y. Zhang, J. Wang, and W. Liu, “Detecting back-
door in deep neural networks via intentional adversarial perturbations,”
Information Sciences, vol. 634, pp. 564–577, 2023.

[5] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal
adversarial perturbations,” in Proc. of IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 1765–1773.

[6] J. Feng, L. Zou, O. Ye, and J. Han, “Web2vec: Phishing webpage
detection method based on multidimensional features driven by deep
learning,” IEEE Access, vol. 8, pp. 221 214–221 224, 2020.

511

