
DGA-based Intrusion Detection System using
Federated Learning Method on Edge Devices

Nguyen Ngoc Minh, Pham Trung Hieu, Vu Hai, Nguyen Huu Thanh
School of Electronic and Electrical Engineering

Hanoi University of Science and Technology, Vietnam

Abstract—Cybersecurity is one of the most important tasks to
secure a network. In traditional approaches, Network Intrusion
Detection Systems (NIDS) are usually located on the Cloud, which
always handle large amounts of data or are integrated into fire-
walls that detect malicious network traffic by extracting specific
network features. Both solutions have their own disadvantages. In
this paper, we proposed a method for detecting network intrusion
at edge devices while not compromising privacy. The proposed
system focuses on detecting malicious domain names generated
to evade Intrusion Detection Systems (IDSs). We implemented
a machine learning algorithm on edge devices and applied the
Federated Learning as an approach for distributed intrusion
detection. Additionally, we considered the heterogeneity of Cloud-
Edge systems and experimented with different non-IID distribu-
tions of data among heterogeneous clients. The findings of this
study indicate that the proposed system is capable of effectively
detecting harmful behaviors, even without sharing local data with
the central server. The performance of the proposed system is
comparable to that of centralized and traditional techniques.

Index Terms—Federated Learning, DGA, NIDS, Machine
Learning, Cloud Edge

I. INTRODUCTION

The Cloud and Edge computing is the prominent architec-
ture of IoT devices and the central cloud usually has dominant
computing ability. There are many applications integrated into
the cloud with various types of data stored in a distributed
manner, leading to the risk of various cyberattacks such as
DDoS, malware, or even zero-day attack. Specifically, malware
seeks to invade, damage, or disable computers, computer
systems, networks, tablets, and mobile devices, often by taking
partial control over a device’s operations. Modern malware
nowadays relies on some remote connection with their at-
tacker’s C2 (Command & Control) servers to operate. Previ-
ously, such connections were easily blocked by using rules
and blacklisting methods. This is why Domain Generation
Algorithm (DGA) was developed. DGA is a type of algorithm
that takes a random seed, feed it through some algorithms
to generate pseudo-random domains, and then concatenates it
with an additional top-level domain (TLD). The attacker can
ship the malware with the DGA algorithm to automatically
generate domains and query it to the DNS server, eventually
coinciding with the C2 server domain, thus the malicious
connection is established. A traditional approach to block this
type of threat is to use a signature–based detection system
that contains a huge collection of signatures (Indication of
Compromise) that a cybersecurity engineer could find via
malware affected devices. Such a solution is reaching its limit

because attackers always change the signatures of cyberattacks
using complicated algorithms. In many cases, the cloud has
to deal with numerous hardware-demanding tasks: computing,
processing requests from a lot of edge devices, and pattern
matching for the IDS. When the central cloud is overloaded,
the performance of the cloud network might be reduced.
Furthermore, mitigation applied after an attack has reached
the central system is no longer an optimal strategy because
the attackers have already achieved their goal. Thus, early
prevention, close to the source of the attack, is required.

On the other hand, by making use of recent approaches
based on machine learning such as deep learning, one can
leverage the huge amount of data from multiple edge devices
to learn complex hidden features that may distinguish between
benign and malicious activities. However, traditional training
methods require data to be gathered and learned in a cen-
tralized manner. Such requirements put a heavy burden on
the network since the system has to consistently collect raw
data from multiple clients. When the cloud edge system is
scaled horizontally, the traffic load is increased accordingly
and thus, the central server will undoubtedly be overloaded.
Another drawback of the centralized approach is that clients’
local data must be transferred to the server, therefore exposing
themselves to the risk of leaking highly sensitive data, and
infringing one’s privacy. To address such issues, Federated
Learning (FL) [13] is adopted to enable large-scale aggrega-
tion, allowing a large number of edge devices to share their
‘knowledge‘ without exposing one’s personal or proprietary
data.

The contribution of our research are as follows:
1) We implemented a system that detects network intrusion,

particularly DGAs, by classifying benign and malicious
edge devices based on their domain queries. We em-
ployed a deep neural network that specifically targets
character-based DGAs and allows edge devices to ag-
gregate their experiences without sharing their local data
using Federated Learning. Thus, we can build a globally
high performance neural network for DGA detection that
can serve a large number of edge devices.

2) We perform experiments to show that the proposed
system’s performance is on par with traditional methods
of detecting DGAs, while still maintaining data privacy.

3) Based on the results of the experiments, we also discuss
about the problem of data heterogeneity and its impact
on the performance of an FL system.

512979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

II. RELATED WORK

A. Domain Generation Algorithms

DGAs nowadays are getting more and more complex in
order to combat recent feature-based DGA detection mech-
anisms. The first malware used DGA to bypass domain
blacklisting was Kraken in 2008. Kraken’s randomly generated
domains were generated using random characters, therefore it
was easy to detect them using human intuition, i.e., ghcxn-
cadnj.dyndns.org. Such DGAs were classified as character-
based DGAs, where the domains are constructed using non-
contextualized characters. Recent malware such as Gozi, Mat-
snu, or Suppobox [9], crafted their domains using a list of
real words (dictionary-based), resulting in domains that are
extremely challenging to recognize using human intuition, not
mentioning automatically recognizing them using statistics or
features. The latter was called dictionary-based DGAs.

There have been already a few proposed defensive mech-
anisms to combat the use of DGAs, further improving the
effectiveness of anti-malware systems. An early approach
was analyzing network logs to identify abnormal domain
queries using statistical or hand-crafted features. Yadav et al.
[21] proposed statistical measures such as Kullback-Leibler
divergence, Jaccard index, and Levenshtein edit distance of
uni-gram and bi-gram followed by a L1-regularized linear
regression model to classify attack and benign (white-listed)
domains. Bilge et al. [4] proposed the EXPOSURE, a frame-
work that performs passive analysis of the DNS traffic, extract-
ing 15 domain name features and then perform classification
using the J48 Decision Tree classifier. Later in 2017, A.
Ahluwalia et al. [2] extracted information theoretic features
such as entropy, length, vowel rate, etc. from the domains
before feeding them to two different supervised classifiers:
Random Forest and Decision Tree. These early approaches
require feature engineering and thus do suffer from model
drifting, where newer malware build more complex domains.

Deep learning approaches have proven to be very effective
against character based DGAs, but not very much for newer
types of DGAs, where they use words from dictionaries and
the crafted domains resemble English words. Such DGAs are
called dictionary based DGAs. Curtin et al. [5] suggested a
notion for measuring the complexity or difficulty of a DGA’s
family domain, called smash-word score, showing how much
a domain looks like English words. At the same time, they
add additional domain registration side information along with
the domain to a Recurrent Neural Network and achieved
reasonable results. Highnam et al. [10] created a novel hybrid
neural network by using CNN and LSTM in parallel, then
calculating the likelihood of such domain being malicious by
bootstrap aggregating (or namely bagging).

B. Distributed Artificial Intelligence

Distributed Artificial intelligence (DAI) is a type of AI
system that is designed to operate across multiple computers
or devices, often in a distributed or decentralized manner. DAI
has been an emerging field of research for more than 30 years,

but not until recently it gains significant attention thanks to the
increasingly large and hardware-demanding machine learning
models, as well as bombarding amount of data. Such advances
in technology are being bottlenecked by the requirement of
hardware resources. By utilizing distributed systems, one can
provide AI a larger degree of accessibility and scalability.

When considering distributing AI to multiple devices,
there are two fundamentally different approaches: horizontal
and vertical distribution. Distributing horizontally, sometimes
called the Data Parallelism [12], is to partition the data into
multiple parts and distribute them to multiple clients for
processing. Ideally, each client receives a partition of the
data, optimize their localized model using that data and then
aggregate the model with other clients via a central server
(sometimes called a Parameter Server). In Data Parallelism,
each client has access to the same model via either cloning the
global model or through some centralizing mechanism. This
technique is straightforward to implement, however, based on
the assumption that the data of multiple clients is independent
and identically distributed (IID). The other approach to DAI
is of partition AI vertically, which is called Model Parallelism
[6]. In this method, each client should have access to the exact
copy of the entire dataset, albeit operating on different parts of
the model. This method performs best in the environment of
multiple devices that share very high bandwidth connections
(i.e. data center) due to the extensive amount of data to be
transferred between the forward and backward propagation of
the machine learning model.

In this paper, we discuss a method called Federated Learn-
ing (FL) [13], in some ways very similar to Data Parallelism.
However, whereas Data-Parallelism focuses on distributing the
data to clients for offloading the processing task, Federated
Learning prioritizes working on the local data collected from
each client, thus preserving the clients’ data privacy. Since
Federated Learning neither allows one client nor any central
server to access another client’s dataset, the assumption of
IID properties shared among the clients can not always be
satisfied [8]. There are multiple FL frameworks and tools
such as Tensorflow Federated by Google [18], Flower [7], .etc.
Previous work has successfully applied Federated Learning to
solve real-world problems from many fields such as medical
and healthcare [14], recommendation system [1], edge com-
puting [15], .etc. However, there are still many problems those
challenges the the application of Federated Learning in real-
world scenario such as security threats [16], heterogeneity [17]
and communication cost [22].

As previously addressed, in order to effectively counter-
act attacks and malicious activities in cyberspace, machine
learning-based methods usually require that user’s data should
be shared, which could cause privacy issues. To the best of our
knowledge, our proposed system is the first to apply the FL ar-
chitecture to solve the problems of DGA detection. Inherently,
domain query data is a rather sensitive and personalized data.
The deployment of FL in this context proposes the sharing
of knowledge between multiple devices, thus improve the
effectiveness of security systems by enabling them to process

513

DPI

Security Gateway (SG)

data domain name

FL node (client)

Aggregator

Central Intelligence

SG SG

Transfer updated weights from client to aggregator
Transfer updated weights from aggregator to client

(a) FedAverage Topology in Security

Receive global
model

Training with
local data

Aggregate clients'
weights

Evaluate

Evaluate

Client side Server side

(b) System Dataflow

Fig. 1: High-level FL architecture

and analyze a large amount of data in real-time, meanwhile,
still maintaining data privacy. At the same time, experimental
results show that the performance of our proposed model
do not suffer compared to conventional centralized machine
learning approaches in terms of training a DGA detection
model.

III. METHODOLOGY AND IMPLEMENTATION

Federated learning is a machine learning approach that en-
ables multiple parties to train a shared model without sharing
their data with each other. Our work adopted the Federated
Average (FedAvg) architecture from H. Brendan McMahan et
al. [13]. In FedAvg, each party (also known as a “node” or
a ”client”) trains a model on its own data and then shares
the model parameters with a central server or aggregator. The
aggregator then combines the model parameters from each
node and uses them to update the shared model. Figure 1a
shows the overall topology of a FedAvg system deployed in
security context. As shown in the figure, conventional security
gateways (SG), such as firewalls are usually connected to a
Central Intelligence that collects data for analysis. In order
to implement a distributed DGA detection mechanism, we
suggest that a FL node is integrated in each SG. The FL
node that runs an ML model collects the domain names from
the deep packet inspection (DPI) component. The ML model
parameters in the FL node are then shared with the aggregator
located in the Central Intelligence. Figure 1b illustrates the
high-level procedure’s dataflow of FedAvg. Generally, an FL
procedure optimizes a global model by iterating the following
process: 1) The aggregator distributes the global model’s
weight to the nodes that participate in the FL process, 2)
The node then optimizes its model using some optimization
algorithm and its locally collected data, 3) The aggregator
then collect nodes’ models, use some aggregation scheme to
combine the nodes’ model before updating the global model
and begin the new training round.

To detect client infected with malicious software, we imple-
mented a Long-Short Term Memory (LSTM) model from the

previous work of Highnam et. al. [11] as a binary classifier
to classify malicious versus benign domain names. LSTM
is a improved version of Recurrent Neural Network (RNN).
LSTM has advantages in handling data containing temporal
information such as combination of characters and maintain
long-term dependencies for longer domain names. Such model
have proven to be very effective in classifying character-
based DGAs [11] and also lightweight, which is suitable
for the FL system where the neural network model must
be replicated to train and do inference at each edge device.
We did research on data published on Umbrella Popularity
List [19] for top 1 million most popular websites, and found
some common features about benign domains. They usually
have meaningful words in their domain name rather than
random characters. These type of DGAs require significant
improvement in machine learning model to differentiate DGA
and benign domain, which in turn demand higher computing
power on edge devices. In our research, we aim solely on
character-based DGA rather than the counterpart word-based
DGA. We employed the algorithms collected in baderj [3]
available from the Github repository. This baderj [3] repository
provides a list of synthetic algorithms for DGAs, which were
reverse engineered by security researchers. The process of
constructing such algorithms is out of scope and will not be
discussed in this work. We then use traditional training method
and visualize the cluster of domains’ embeddings as figure 2
to prove that the LSTM model can properly distinguish the
DGAs and benign domains given that the model has been
trained sufficiently. The training objective for LSTM model is
the same: binary classification. The embeddings we used are
collected from the output layers of the LSTM model, which
is 128-dimensional. We then used a T-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [20] implementation from
scikit-learn in Python to reduce the dimensionality of your
128-dimensional embeddings to a 2-dimensional space. T-SNE
is a stochastic algorithm, and the distances between points on
the plot do not necessarily reflect the original distances in the
high-dimensional space. However, it realize the randomness

514

Algorithm 1: Non-IID sampling
Algorithm parameters: IID rate rIID, number of

sampled data Ns, sets of K different data types
C1, C2, ...CK ⊂ C, skewed data type k.

Function sample-non-iid(rIID, Ns, k):
S ← ∅
for j = 1, 2, ...K do

if j ≡ k then
S ← S∪ (randomly sample
(1− rIID) ∗ ∥Cj∥ data points from Cj)

else
S ← S∪ (randomly sample rIID ∗ ∥Cj∥
data points from Cj)

end
end
return S

pattern of the embeddings before and clusteried pattern after
training.

IV. EXPERIMENTS

Our experiments are based on synthetic simulation, in
which different data are fed to a number of clients deploying
federated learning. In the experiments we did not take into con-
sideration the difference of processing and network capability
among clients and only focus on the features of the dataset. To
evaluate the performance of the proposed approach, we choose
binary classification task using a customized dataset and we
choose the Receiver Operating Characteristic (ROC) curve and
Area Under Curve (AUC) score to evaluate the performance
of the aggregated model. AUC measures the ability of a binary
classifier to distinguish between classes and is used as a
summary of the ROC curve. The higher the AUC, the better
the model’s performance in terms of distinguishing between
the positive and negative classes. We tested the system based
on three main test strategies: 1) Using the same number of
clients participate in the FL process, but different amount of
training data at each client. We use this test case to investigate
the impact of the amount of training data on the performance
of the aggregated model; 2) Using the same amount of
training data at each client but different in the number of

(a) Before training (b) After training

Fig. 2: Clusters of domains visualized using TSNE

TABLE I: FL system simulation parameters

Parameter name Values

Number of clients 8, 16, 24, 32
Number of DGA distributed 500, 1000, 2000

to each clients
Number of communication rounds 100

Number of local epochs 1
Local batch size 100

IID-rate 0.1, 0.25, 0.5, 1

clients participating in the FL process. This test reflects how
horizontally scaling the FL system impacts the performance
of the global model; 3) Using same amount of training data
overall but different implementation of training: centralized
and federated learning. This is to see how distributed training
performs compared with traditional centralized methods; 4)
Using the the same number of clients, amounts of data, and
other hyperparameters except for the distribution of the data
at each clients. Our goal in this experiment is to simulate
the problem of data heterogeneity and to which degree data
heterogeneity affects the performance of the aggregated model.
In our first 3 test strategies, we explicitly use Identically and
Independently Distributed (IID) data at each client, and only
in test strategy 4 we introduce the non-IID distribution (under
our synthetic non-IID sampling methid). Centralized approach
in our experiment means that the server should collect the data
from all the clients and then train the model locally sever side
using the collected data. In our test, we consider the most
trivial implementation of Centralized Learning (CL), where
one client simulate data generation and then send the data to
the sever each round. We also adopt the conventional training
model, where all rounds’ data is gathered and training in one
round and we consider this as a baseline for comparison. Other
evaluation will be compared with this baseline to illustrate
the effects of FL process in multiple cases. Our complete
simulation parameters and their legend explanations used in
Fig. 3 are shown in Table I.

TABLE II: Number of samples w.r.t. DGA families

DGA family Number of samples

corebot 124961
fobber 125283
kraken 71673
locky 125316

murofet 125500
newgoz 124683
qadars 124833
zloader 58322

Our dataset consists of domain names and their correspond-
ing labels: malicious domains (DGA domains) and benign
domains (legitimate domains). The DGA domains were chosen
from collections of related DGAs, known as DGA families,
generated by reverse engineering a set of DGA malware [3].
Several families of DGAs derived from this source were
empirically identified as character-only DGAs based on the
structure of the domain names generated by the malware

515

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

10

4

10

2

1

2

1 10

2

1 10

4

T
r
u
e

P
o
s
i
t
i
v
e

R
a
t
e

500 batchsize - 0.9841

1000 batchsize - 0.9929

2000 batchsize - 0.9974

(a) Different amount of data

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

10

4

10

2

1

2

1 10

2

1 10

4

T
r
u
e

P
o
s
i
t
i
v
e

R
a
t
e

8 clients - 0.9927

16 clients - 0.9935

24 clients - 0.9925

32 clients - 0.9932

(b) Different number of clients

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

10

4

10

2

1

2

1 10

2

1 10

4

T
r
u
e

P
o
s
i
t
i
v
e

R
a
t
e

baseline - 0.9956

centralized - 0.9985

federated - 0.9847

(c) Different methods

0 20 40 60 80 100

Training Round

65

70

75

80

85

90

95

E
v
a
l

A
c
c
u
r
a
c
y

10% IID

25% IID

100% IID

(d) Different IID-rates

Fig. 3: Performance comparison between different configura-
tions and approaches

samples and the algorithm used to generate those DGAs.
The corebot, fobber, kraken, locky, murofet, newgoz, qadars,
zloader families were chosen. After eliminating duplicate
domain names, Table II provides the number of DGA samples
collected with respect to each DGA family. The training set’s
legitimate domains originate from the Cisco Umbrella top 1
million domains [19]. After collecting all the domains and
their labels, we randomly divide the data into two sets: the
training set and the validation set with the proportion of each
being 0.9 and 0.1 respectively. Primarily, the training set is
used to sample the training data and distribute them to the
clients in our FL process following the aforementioned 3 test
strategies. The validation set is used by the central server to
validate the efficacy of the aggregated model at each and
every communication round. We employed Algorithm 1 to
sample the data at client side. For instance, rIID = 0.3 means
that when providing data to each client in our simulation, we
sample 30% of the data randomly over all labels, and the other
70% are sampled in a way that all of them have identical
labels. In this algorithm, we create a mapping of individual
client versus a single DGA family. Multiple clients can share
the same DGA family according to their mappings, and that
DGA family is the majority in the client’s local dataset. This
allows us to address not only the extreme IID and non-IID
cases but also the cases, in which the data from each client
are partially IID.

As shown in Figure 3a, we have experiment with different
amount of data that synthetically distributed to each clients
(500, 1000 and 2000), as in Table I. In the labels, 500b
indicates that we have distributed to each client in the FL
process 500 domain names, all of which are distributed in
IID manner. It is shown from the graph that by increase the
amount of data in the client side, the overall performance
of the aggregated model is better accordingly. Whereas, in

Figure 3b, where we try to differentiate the number of clients
(8, 16, 24 and 32) and fix other parameters in Table I. Despite
using more data, it yields little to none improvement on the
quality of the aggregated model. This can be explained based
on the process of batched model optimization. During such
optimization process, the data are divided into multiple batches
(the size of these batches at each client is called the local batch
size) and then the optimizer performs model update iteratively
for each batch of data. In our experiment, we deployed the
same local batch size, in which results a higher number of
batches for a higher amount of data. The higher number of
batches means more optimization steps in one round, thus
create a larger gradient stride when we aggregate all clients’
model. As for scaling up the number of clients, the results
is nearly the same because the same amount of data means
gradient step from each client remain unchanged.

Our second experiment is to compares FL with CL and
baseline approaches. The implement of CL and FL used the
same data partitions from for each round. The difference is, in
each round, the client in the CL scenario does not perform
any training, but sends all data to the central server. The
central server combines all the collected datasets into a single
one for training. For the baseline, we disregard any notion
of clients and de-centrality by collecting all the data from
all clients and train the model in one single training loop. In
this experiment, we used 8 clients, each client had 500 data
points and trained for 100 rounds. As depicted in Figure 3c,
CL method is the one yields the best performance in term of
AUC score. This can be explained by the model optimization
process similar to the case in Figure 3b. In Figure 3b, we use
different of number of clients to identify the impact of such
variable to the overall performance of the model. Given that
each client has the same amount of data, our hypothesis is
that the performance of the FL algorithm does not depend on
the number of clients. Our hypothesis is that given the similar
amount of data at each client, the performance of FL method is
invariant to the number of clients. The explanation is that each
client contribute to the central model a gradient vector, scaling
up the number of client only increase the number of vectors
in the aggregation process yet the vector distribution remains
unchanged as the data are IID. By collecting all clients’ data,
the central server have a significantly larger number of batches
in each rounds, thus makes the aggregated model outperforms
other two methods. As also observed in Fig. 3c, the baseline
model performs better than FL as FL suffered from a phe-
nomenon called gradient divergence [23]. This caused each
locally optimized model from each client to diverge from each
other, inherently conflict with each other and reduce the global
aggregated model’s performance. Overall, in this experiment,
we can conclude that FL process indeed negatively impacts
the final performance of the ML model. However, since the
different between the centralized and federated version is only
0.0146 in terms of AUC score, we consider this a small trade-
off for the overwhelming advantage of data privacy.

The phenomenon of gradient divergence is further illustrated
in our final experiment (Fig. 3d), where we introduced the

516

non-IID distribution of data to the proposed system. In this
experiment, we generate non-IID datasets by randomly sample
the data at each client with weight. The degree of IID for
a client’s dataset is reflected using a parameter called IID-
rate, or IID %. Our strategy to sample the data is shown in
Algorithm 1. In this experiment, we used 8 clients, training
for 100 rounds and each client has a batch size of 1000. Our
results shows that the global aggregated model’s performance
increase accordingly to the IID-rate. The best performer is the
aggregated model from 100%IID sampled dataset while the
worst is the 10% IID one. 100% IID means that the local
dataset is completely distributed in an IID manner, which
results in the gradient divergence being smaller than the case
of non-IID distribution. Whereas, in the 10% case, each client
only have 10% of their data randomly distributed, the rest 90%
is skewed to one specific label. Because of the skewed-ness in
the data, we can reason that different clients’ gradients is not
consistent. Therefore, the aggregated model is very unstable
and does not perform well compare to higher IID percentage.

V. CONCLUSIONS

This paper proposes an approach for DGA detection based
on Federated Learning. The approach can be deployed in a
distributed manner in edge devices or security gateways at
users’ sites. Previous DGA detection mechanisms require that
the domain name records be collected and sent to a central
entity, thus relying on a single system to perform inference.
By using FL, we allow the central intelligence to learn from all
the edge devices while not sharing any sensitive data such as
domain access record to the central entity. Since FL keeps
raw data on the device and only sends model updates to
the central server, FL itself is a layer of protection, reduces
the risk of personal data leakage, and ensures the security
of operations. On the other hand, FL allows the distributed
system to use locally sensitive data to train and contribute to
an aggregated model that distills the knowledge of a swarm
of edge devices. The results of this study demonstrated that,
despite not directly sharing local data with the central server,
the proposed system can maintain reasonable performance
of detection malicious activities, comparable with centralized
and traditional techniques. Additionally, where as the number
of clients does not affect the performance of the aggregated
model, the amount of data distributed to each client and the
IID-ness of the data matters. However, our test on data het-
erogeneous setting also showed that the proposed FL system
are susceptible to the heterogeneity problem. Another problem
need to be addressed is system heterogeneity, where multiple
device can have different computational capabilities and each
have a different IID-rate. It is our future work to implement a
more robust FL schemes such as hierarchical client selection
mechanism to address the problem of heterogeneous device
and data.

ACKNOWLEDGMENTS

This research is funded by Ministry of Education and
Training under project number B2023-BKA-10.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions. IEEE Transactions on Knowledge and Data Engineering,
17(6):734–749, 2005.

[2] Aashna Ahluwalia, Issa Traore, Karim Ganame, and Nainesh Agarwal.
Detecting broad length algorithmically generated domains. In Issa
Traore, Isaac Woungang, and Ahmed Awad, editors, Intelligent, Secure,
and Dependable Systems in Distributed and Cloud Environments, pages
19–34, Cham, 2017. Springer International Publishing.

[3] Johannes Bader. Domain generation algorithm. https://github.com/
baderj/domain generation algorithms.

[4] Leyla Bilge, Sevil Sen, Davide Balzarotti, Engin Kirda, and Christopher
Kruegel. Exposure: A passive dns analysis service to detect and report
malicious domains. ACM Trans. Inf. Syst. Secur., 16(4), apr 2014.

[5] Ryan R. Curtin, Andrew B. Gardner, Slawomir Grzonkowski, Alexey
Kleymenov, and Alejandro Mosquera. Detecting DGA domains with
recurrent neural networks and side information. CoRR, abs/1810.02023,
2018.

[6] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Marc' aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, Quoc Le, and Andrew Ng. Large scale distributed deep
networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

[7] Flower: A friendly federated learning framework. https://flower.dev/.
[8] Dashan Gao, Xin Yao, and Qiang Yang. A survey on heterogeneous

federated learning, 2022.
[9] J. Geffner. End-To-End Analysis of a Domain Generating Algorithm

Malware Family, 2013.
[10] Kate Highnam, Domenic Puzio, Song Luo, and Nicholas R. Jennings.

Real-time detection of dictionary DGA network traffic using deep
learning. CoRR, abs/2003.12805, 2020.

[11] Kate Highnam, Domenic Puzio, Song Luo, and Nicholas R. Jennings.
Real-time detection of dictionary dga network traffic using deep learn-
ing, 2020.

[12] Alex Krizhevsky. One weird trick for parallelizing convolutional neural
networks. CoRR, abs/1404.5997, 2014.

[13] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera
y Arcas. Federated learning of deep networks using model averaging.
CoRR, abs/1602.05629, 2016.

[14] Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu.
Medmcqa : A large-scale multi-subject multi-choice dataset for medical
domain question answering, 2022.

[15] Sharnil Pandya, Gautam Srivastava, Rutvij Jhaveri, M. Rajasekhara
Babu, Sweta Bhattacharya, Praveen Kumar Reddy Maddikunta, Spyri-
don Mastorakis, Md. Jalil Piran, and Thippa Reddy Gadekallu. Federated
learning for smart cities: A comprehensive survey. Sustainable Energy
Technologies and Assessments, 55:102987, 2023.

[16] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and
Shiho Moriai. Privacy-preserving deep learning via additively homo-
morphic encryption. IEEE Transactions on Information Forensics and
Security, 13(5):1333–1345, 2018.

[17] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards
personalized federated learning. IEEE Transactions on Neural Networks
and Learning Systems, pages 1–17, 2022.

[18] Tensorflow federated: Machine learning on decentralized data. https:
//www.tensorflow.org/federated.

[19] Umbrella popularity list. http://s3-us-west-1.amazonaws.com/
umbrella-static/index.html.

[20] Laurens van der Maaten and Geoffrey Hinton. Viualizing data using
t-sne. Journal of Machine Learning Research, 9:2579–2605, 11 2008.

[21] Sandeep Yadav, Ashwath Kumar Krishna Reddy, A.L. Narasimha Reddy,
and Supranamaya Ranjan. Detecting algorithmically generated malicious
domain names. IMC ’10, page 48–61, New York, NY, USA, 2010.
Association for Computing Machinery.

[22] Guang Yang, Ke Mu, Chunhe Song, Zhijia Yang, and Tierui Gong.
Ringfed: Reducing communication costs in federated learning on non-iid
data, 2021.

[23] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and
Vikas Chandra. Federated learning with non-iid data. 2018.

517

