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Abstract—One of the possible methods for obtaining reduced
latency is the use of neural network decoder (NND) on polar
codes. We also apply the convolutional polar codes. We propose
an iterative approach to optimize the information set for NND.
The proposed approach reduces the block error rate (BLER)
performance by exchanging one bit in the information set for
one bit in the frozen set. This process is performed until the
improvement is saturated. The simulation results show that the
BLER performance was enhanced by using the proposed iterative
approach for polar codes and convolutional polar codes.

I. INTRODUCTION

Polar codes, introduced by Arikan in [1], are a new class
of channel codes which can achieve the symmetric capac-
ity of memoryless channels asymptotically under successive
cancellation decoding (SCD). The polar codes were adopted
as the channel codes for control signaling in the 5G mobile
communication system. By replacing the block structured
polarization step of polar codes by a convoluted structure,
the performance at short to moderate block length can be
improved, which is called “convolutional polar codes” [2], [3].

Even though the SCD for polar codes and convolutional
polar codes can achieve symmetric capacity at a low computa-
tional complexity, it is difficult to achieve low latency and high
throughput since the decoding relies on the sequential algo-
rithm. Research has been conducted to decrease the latency of
SCD and successive cancellation list decoding (SCLD) [4], [5].

However, a different strategy is more feasible to reduce
the decoding latency. One possible solution is employing the
neural network decoder (NND) [6]. In comparison to the
SCD and SCLD, the NND finds its estimate by passing each
layer only once, which enables low latency implementations,
which is called one-shot decoding. Although NND is very
effective in reducing latency, it suffers from the curse of
dimensionality, which limits its block length to be short. To
overcome this problem, it was proposed that the encoding
large graph was partitioning into smaller sub-blocks, which
are trained individually. These blocks are then connected
via the remaining conventional belief propagation decoding
(BPD) [7]. The resulting decoding algorithm is non-iterative
and inherently enables a high-level of parallelization.

Such partitioning causes performance degradation. To com-
pensate for the performance degradation, it is effective to
construct polar codes and convolutional polar codes (i.e.,
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information set and frozen set) optimized for the NND.
However, there exists no explicit construction optimized for
other decoding algorithms than SCD. In [8], and [9], the
genetic algorithm is used to optimize the information set for
SCLD, BPD [10]. In [11], and [12], the information set for
BPD is optimized by adding bits to the information set one
by one using computer simulation. We proposed the iterative
algorithm to optimize the information set for BPD [13]. In
[13], one bit in the information set is exchanged for one bit
in the frozen set, which decrease the error rate performance.
This process is iteratively performed until the performance
improvement is saturated.

Although various methods have been proposed, to the best
of the author’s knowledge, no investigation has been conducted
for information set optimization for NND suitable for polar
codes. In particular, information set optimization for convolu-
tional polar codes has not been investigated yet. Therefore, in
this paper, we optimize the information set in NND suitable
for polar codes and convolutional polar codes. Specifically,
we optimize the information set using the iterative algorithm
proposed in [13]. However, it differs from [13] in that the
NND weights depend on the bit-channels in the information
set, and thus the NND retraining is applied during the iterative
algorithm.

The remainder of this paper is organized in the following
manner. We first describe the polar codes and convolutional
polar codes briefly in Section II. After describing the NND
structure in Section III, Section IV explains the proposed
iterative algorithm used in the paper. Section V shows the
evaluation results, and finally, conclusions are presented in
Section VI.

II. BRIEF DESCRIPTION OF POLAR CODES AND
CONVOLUTIONAL POLAR CODES

This section briefly explains the polar codes and conven-
tional polar codes. Both codes generate the N = 2" polarized
synthetic channels by applying n-fold channel transformation.
The K most reliable bit-channels are selected to transmit
information bits, which is defined as information set, Z. The
remaining (N — K) bit-channels are set to known bits such as
0, which is defined as frozen set, 7 = Z. Here, |Z| = K and
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Fig. 1: Polar code and convolutional polar code (K =4, N =
8,7 =1{3,5,6,7}, F ={0,1,2,4}).

|F| = N — K. To obtain the reliabilities of the bit-channels',
we employ the Bhattacharyya bound [14]. In this method, the
Bhattacharyya parameters, Z (WJ(\;)) is used to obtain the error
rate of the i-th bit-channel, W](\,i). The upper bound on the
Bhattacharyya parameters of the bit-channels evolve as simply
as

{z,2} = {22 — 22, 2°}. (1)

In the evolution, z is initialized as z = exp(—yq). Here, vq
is the design-SNR.

Figure 1 shows the encoding structure of polar codes
and convolutional polar codes when K = 4, N = 8§, and
7 = {3,5,6,7}. In the figure, only the “polarization units”
shown in black is used for Polar codes. In contrast, the
convolutional polar codes improve the polarization speed by
adding “polarization units” (shown in red) in addition to the
black ones. In both codes, the information bits including frozen
bits are denoted as w = (ug,u1,...,un—1). In the example,
u = (0,0,0,us, 0, us,us, ur). The encoded sequence is de-
fined as @ =(xzg, z1, ..., TN—1). We assume binary phase shift
keying (BPSK) modulation and an additive white Gaussian
noise (AWGN) channel. The received signal is defined as

y:(yan17"' 7yN—1)~

III. NND STRUCTURE

This section briefly describes the NND structure used in the
paper, which follows [6]. In the case of convolutional polar
codes, it follows [15], which is an extension of NND in [6].
The decoder can be regarded as the K-dimensional binary
classification problem with the input of the received signal, y.

Figure 2 schematically illustrates the example of NND
structure. In this example, the code length is set to N =
23 = 8. The information set is defined as Z = {3,5,6, 7}, and
number of information bits is set to K = |Z| = 4. The NND
consists of input layer, L-intermediate layers, and output layer.
The numbers of nodes in input and output layer are set to IV,
and K, respectively. The rectified linear unit (ReLU) function
was used as the activation function for each intermediate layer

IMore precisely, it was used to obtain the initial information set for the
iterative algorithm described in Section IV.
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Fig. 2: NND structure (Z = {3,5,6,7}, K = |Z| =4, N = 8).

and the sigmoid function for the output layer, as shown in the
following equation:

1
Cl4e o’
We employ batch normalization [16] only for convolutional
polar codes based on the results in [15]. It applies a trans-
formation that maintains the mean output close to 0 and the
output standard deviation close to 1.

The K outputs of NND, z"*, correspond to the probabili-
ties of K information bits. Therefore, following equations are
used to obtain the decoded bits of the k-th information bits,

Vk.
. 1
v =
"o

The code structure is learned from the noisy received signals
in advance. It is important to note that the weights of the
NND varie depending on the bit-channels in the information
set. In other words, when using iterative optimization, which
is explained in the next section, it is necessary to learn again
every time the information set is changed.

grelu(x) = maX{O, I}a Jsig (l‘) (2)

(2t > 0.5)

(otherwise)

3)

IV. ITERATIVE ALGORITHM

This section explains the proposed iterative algorithm.
Figure 3(a) shows the proposed iterative algorithm. In the
algorithm, we define ZU) and F() as the information set,
and frozen set after the j-th iteration (let Z(°) be the initial
information set before iteration). Let Pynp (7,Z, F) be de-
fined as the block error rate (BLER) employing NND when
the information (frozen) set is Z (F) and the SNR is 7.

According to these definitions, we present the proposed
algorithm as OptimizeTandr(Z(®, F© 5) in Algorithm
1. In this algorithm, by inputting the information set, frozen
set and SNR, the information set and frozen set are updated to
the information set and frozen set with the lowest BLER when
exchanging one bit of the information set and frozen set. If
BLER, EY) using the updated information set and the frozen
set are the same or greater than the values before the update,
EU=1 the update is stopped. Then, the information set and
the frozen set before updating, ZU—1), FU=1 are output.

The exchange of a single bit between the information set
and the frozen set is performed by UpdateIandF(Z,F,~)
in Algorithm 2, which is schematically illustrated in Fig. 3(b).
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Fig. 3: Proposed iterative algorithm.

The bit-channel ¢ in the information set Z selected by the
for loop in line 2 and the bit-channel f in the frozen set F
selected by the for loop in line 3 are replaced in lines 4 and 5 to
obtain a updated information set Z' and frozen set F'. In line
6, the NND is trained assuming information set of Z’, since
the weights of the NND varie depending on the bit-channels
in the information set. In line 7, the BLER employing the
NND when the information (frozen) set is Z' (F’) is obtained.
After obtaining the BLER using NND, it is compared with the
minimum BLER so far, F,,;,. If the obtained BLER is smaller
than the minimum value, this information set, the frozen set,
is saved as (Zmin, Fmin), and the minimum BLER, Ey;,, is
updated. This process is performed for all combination of ¢ and
f in one updating process. Finally, (Zynin, Fmin ), and Fy,i, are
returned to Algorithm 1.

V. NUMERICAL EVALUATION

This section shows the evaluation results. In the evaluation,
we perform three evaluations. The detailed simulation param-
eters are listed in Table I.

Before presenting the numerical evaluation results, we
briefly discuss the decoding latency. The SCD requires
[log, N1 steps to decode one information bit. In addition, the

Algorithm 1 OptimizeIandr(Z(©, FO) ~)

1. EO) =00,j 0
2: repeat

3: j—i+1

4 (I(j),f(j)7E(j)) =
5

6

7

: UpdateIandr(ZU—D, FU-D ~)
:until EU) > U1
. return 20— FU-1)

Algorithm 2 UpdateIandF(Z,F,7)

1: Fpin ¢ 00

2: for each i € 7 do

3: for each f € F do

'+ I\{i}, F' + Fn{i}

F +— F{fhLZ <« ZIn{f}

TrainNND (v,Z', F')

E(’va) = PNND (’731,7‘7_.,)

if E(i, f) < Emin then
(Imirn]:min) = (Ila]:/)aEmin = E(Zaf)

10: end if

11: end for each

12: end for each

13: return (Zin, Finins Emin)

R A

K information bits need to be decoded successively. There-
fore, the SCD requires ([log, N|K) steps in total. Meanwhile,
the NND can decode all information bits at the same time, then
requires (L + 2) steps corresponding to the total number of
layers (input, intermediate, and output layers). Table II shows
the decoding latency for both decoding algorithms with the
parameters used in this paper. As shown in the table, the NND
can effectively reduce the decoding latency compared to the
SCD.

We then present the numerical evaluation results of the
parameter optimization of NND, followed by the evaluation
results of the proposed iterative algorithm.

A. Optimization of NND

As explained in Section II, we generated the ini-
tial set for iterative algorithm from the Bhattacharyya
bound. We set the design-SNR 74 of 1 dB, and ob-
tained Z(® = {7,9,10,11,12,13,14,15} for polar codes
and convolutional polar codes when N = 16, and Z(©) =
{11,13,14, 15,19, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31} for
polar code when N = 32.

We first optimize the number of epoch, M., and the
number of nodes in the intermediate layers, Nj,, employing
7O, Figure 4(a) and 4(b) show the bit error rate (BER)
performance as a function of number of epoch, M, for polar
codes and convolutional polar codes when K = 8, N = 16.
The number of intermediate nodes [V, is parametrized. In
this evaluation, the number of intermediate nodes NV, was
used as a parameter. As shown in both figures, all cases
converge to the same BER performance when M., is larger
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TABLE I: Simulation Parameters.

Parameter Values .
Polar codes Polar codes Convolutional polar codes
Number of information bits, K 8 16 8
Code length, N 16 32 16
Coding rate, R 1/2 1/2 1/2
Number of nodes (input layer) N =16 N =32 N =16
Number of intermediate layer, L 3 4 4
Number of nodes (intermediate layers)  (Ning)—(Nint/2)—(Nint/4)  (Nint)—(Nint/2)—(Nint /4) —(Nint/8)  (Nint)—(Nint/2)—(Nint/4) —(Nint/8)
Number of nodes (out layer) K=28 =16 K =238
Loss function Mean squared error Mean squared error Mean squared error
Batch size 2K =256 2K = 65536 (25)/4 = 64
Batch normalization Not applied Not applied Applied
Optimizer Adam Adam Adam
TABLE II: Decoding Latency 0

(K,N,L) SCD ([log, NJK) NND (L +2)
(8,16,3) 32 5
(16,32, 4) 80 6

than 2!, Therefore, we used Ny, = 128 (256) for polar codes
(convolutional polar codes), M., = 2'% in the subsequent
evaluation.

B. Optimization of Information and Frozen Set

We then show the effect of the iterative algorithm on the
error rate.

1) Polar code: Figure 5 shows the BLER performance for
polar codes when K = 8, and N = 16. In the figure, the
z-axis indicates the bit-channel index 7 to be removed from
the information set, with multiple BLERs shown at the same
bit-channel index, . This is because there are multiple bit-
channel indexes f to be added to the information set. The x
values for which no error rate is shown are those defined as
frozen set. In addition, the dashed line indicates the BLER
when Z(© is used for information set. As shown in Fig. 5(a),
the BLER when ¢ = 10 and f = 5 shows the minimum
BLER performance. Furthermore, it shows better performance
than that using ZO), Therefore, the information set is updated
to ZW = {5,7,9,11,12,13,14,15}. In the second iteration
in Fig. 5(b), the BLER becomes worse than that using Z(*)
(dashed line). Therefore, the iterative algorithm stops, and 7 )
is the optimized information set.

Figure 6 shows the BLER performance for the Ist it-
eration when K = 16, and N = 32. In the evaluation,
Niyt is set to 1024. The format of the graph is the same
as in Fig. 5. As shown in the figure, the BLER when
i =24 and f =7 shows the minimum BLER performance.
Furthermore, it shows better performance than that using
Z(). Therefore, the information set is updated to Z(!) =
{7,11,13,14,15,19, 21,22, 23,25, 26, 27, 28,29, 30,31}. We
do not see further improvement in the 2nd iteration (per-
formance is not shown in the paper). Therefore, Z(1) is the
optimal information set.

Figure 7 shows the BER and BLER performance employing
polar codes. As a comparison, we show the performance
when using the optimal information set for SCD, optimized
using the Bhattacharyya bound, Z(°). As shown in the figure,
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Fig. 4: NND optimization.

by applying the proposed algorithm, the BER and BLER is
improved especially for large block length N = 32.

2) Convolutional polar code: We next evaluate the convo-
lutional polar codes. Figure 8 shows the BLER performance
for convolutional polar codes when K = 8, and N = 16.
The format of the graph is the same as in Fig. 5. As shown
in Fig. 8(a), and 8(b), the performance is improved in the
Ist and 2nd iterations. We do not see further improvement



. Polar Code
¢ /=0 K=8,N=16
o f:]
0 f=2
~ » . f=3
EIO E e =4 s oL e . 0
o f=5 H . . ' . . . [
/=6 0 ¢ s v 3
e f=8 Ty Y
B 6]
10

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bit-channel index, i

(a) Ist iteration.

Polar Code
s f=0 K=8,N=16
° f:]
. f:2
~ . f:3
-1
S10F . f=4 . . .
as} =6 . . . ° - o o
o f=8 H ° H PO S T
F f=10 i : > et
-2

0%~ 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bit-channel index, i
(b) 2nd iteration.

Fig. 5: Performance of proposed iterative algorithm for polar
code (K =8,N = 16).
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in the 3rd iteration (performance is not shown in the paper).
Therefore, Z(?) = {3,8,9,10,11,13,14,15} is the optimal
information set. Please note that the optimal information set
for convolutional polar code is different from that for polar
code.

Figure 9 shows the BER and BLER performance employing
convolutional polar codes. Same as Fig. 7, by applying the
proposed algorithm, the BER and BLER is improved. Fur-
thermore, the convolutional polar code can slightly improve
the performance compared to polar code.
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Fig. 7: BER and BLER performance for polar code.

VI. CONCLUSION

This paper proposed an iterative approach to optimize the in-
formation set for NND for polar codes and convolutional polar
codes. The proposed approach reduces the BLER performance
by exchanging one bit in the information set for one bit in the
frozen set. This process is performed until the improvement
is saturated. The simulation results showed that the BLER
performance was enhanced by using the proposed iterative
approach for polar codes and convolutional polar codes.
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