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Abstract— Smart contracts are self-executing programs that 

are executed on blockchain platforms, and they have been widely 
used in recent years. However, malicious exploitation of the 
characteristics of smart contracts has become a pressing problem 
in blockchain security. Most of the existing methods have the 
drawback of detecting only a single type of vulnerability. To solve 
this problem, this study proposes a model for detecting multiple 
vulnerabilities in smart contracts. We preprocessed the data and 
transformed the Opcodes of smart contracts' source code into a 
control flow graph. We then extracted node features that are 
suitable to be the input of a graph neural network using Sent2Vec 
and performed graph classification. The proposed model was 
evaluated using real smart contracts, and the experimental results 
demonstrated that the proposed model can simultaneously detect 
multiple vulnerabilities with high performance.     

Keywords—blockchain, smart contract, vulnerability detection, 
multi-label classification 

 

I. INTRODUCTION 
Blockchain is basically a distributed and shared ledger that 

verifies and records transaction-related information without a 
central system. Ethereum [1], developed by Vitalik Buterin, is a 
blockchain-based open-source distributed computing platform 
and operating system that features smart contracts. Many studies 
related to the Ethereum network have recently been underway 
[2]. Smart contracts are self-executing programs [1] that run on 
a blockchain. They encode the terms of a contract using a source 
code and can implement arbitrary rules to manage the asset. 
Smart contracts simplify complex distributed applications 
(Dapp) by enabling automatic execution of the terms of a 
contract [3]. Smart contracts are deployed on a blockchain 

network according to the consensus protocol, and the rules of 
the contract produce the same results regardless of which node 
on the blockchain network executes them. A smart contract that 
has been mined and uploaded cannot be modified due to 
blockchain integrity. In other words, even if a programming 
defect has been identified, the uploaded smart contract cannot 
be updated. Therefore, a malicious user can exploit an unsafe 
smart contract, causing the contract owner to incur a significant 
loss [4]. For example, an Ether loss of about 60 million dollars 
occurred in June 2016 due to the reentrancy vulnerability 
problem [6] of the DAO smart contract [5]. Therefore, the 
vulnerability of smart contracts needs to be examined before 
they are deployed. 

Developers typically test for vulnerabilities in smart 
contracts before executing them to ensure their security. Manual 
code analysis is inefficient because there are many smart 
contracts, and there are various types of vulnerabilities. 
Therefore, studies are currently being conducted on the 
detection of smart contract vulnerabilities through deep learning 
[7][8]. However, most of the previous studies have been based 
on the binary classification method, and this method can only 
detect whether or not a vulnerability exists. Therefore, this study 
utilizes the multi-label classification method to accurately and 
effectively detect multiple smart contract vulnerability types to 
strengthen the security of blockchain platforms. Our main 
contributions are as follows. 

• Unlike existing models that perform binary classification 
to classify a single smart contract vulnerability, we 
propose a multi-label classification model that can 
identify multiple types of smart contract vulnerabilities 
simultaneously.   

57979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024



 

 

• We can determine the presence of vulnerabilities by 
learning both the semantic and structural information of 
the source code based on the control flow graph of the 
smart contract EVM bytecode. 

 

II. BACKGROUND 

A. Solidity Language and Compiling Solidity 
 Solidity is an object-oriented high-level language for 

implementing smart contracts [9]. Fig. 1 reports an example of 
a smart contract to implement a bank written in the solidity 
language. The balance on the source code is the internal state of 
the smart contract, and the function deposit allows the user to 
deposit the arbitrary amount of currency into the virtual account. 
In addition, through function withdraw, the user to get back a 
certain amount of Ether previously deposited. Solidity provides 
various basic elements that can interoperate with the blockchain 
environment, and there are various elements that are not in the 
examples.  

To execute smart contracts written in Solidity on the 
Ethereum blockchain, the source code needs to be compiled into 
an Ethereum bytecode that can be executed on the Ethereum 
virtual machine (EVM). As shown in Fig. 2, the Ethereum 

bytecode is represented as a valid hexadecimal sequence, and it 
can be parsed into Opcodes, which are minimum instructions 
that can be executed by the EVM [10][11]. The complete list of 
opcodes with their semantics is defined in Ethereum’s yellow 
paper [11]. Every opcode pushes or pops a certain number of 
elements from/to the stack, and it can either access memory, get 
information about the execution environment or interact with 
other blockchain smart contracts. 

 

B. Smart contract vulnerabilities 
 Smart contracts are considered vulnerable when an attacker 

can exploit them. Six well-known vulnerabilities [12] are 
detected in this study. 

Integer Overflow and Underflow In Solidity, integer types 
have a maximum value and a minimum value. Overflow and 
underflow problems occur when the integer value exceeds the 
maximum integer value (overflow) or is less than the minimum 
value (underflow). 

Transaction-Ordering Dependence (TOD) A blockchain 
block contains the transaction set, so the blockchain state is 
updated each time. At this point, there may be a mismatch 
between the state of the smart contract the user intends to call 
and the actual state of the smart contract when it is executed. 
Only the miner can determine the order of transactions, that is, 
the update order. TOD is a vulnerability that occurs as a result 
of changing the order of transactions. 

Timestamp Dependence This vulnerability occurs when a 
contract uses the block timestamp as a condition for calling the 
contract to execute an important operation. When mining a 
block, the miner sets the timestamp for the block. At this point, 
the miner can change this value by about 900 seconds. Therefore, 
the miner can exploit this vulnerability if the contract is 
dependent on the timestamp.  

Mishandled Exception (Call stack’s depth attack) In 
Ethereum, a smart contract can call another smart contract via 
an instruction or call a function. Here, if the call stack depth 
exceeds the threshold value, the contract is terminated, and false 
is returned after reverting the contract’s state. Therefore, the 
caller contract must handle exceptions by checking whether the 
call was properly executed. 

Reentrancy Vulnerability When a smart contract calls 
another contract, the execution waits until the call is completed. 
If the smart contract has a reentrancy vulnerability, an attacker 
can exploit this vulnerability to force repetitive execution of a 
code like a recursive function call. 

 

C. Control Flow Graph 
The control flow graph (CFG) is a directional graph of G=(V, 

E). Each vertex represents a basic block, which is a sequence of 
program instructions with the entry point (the first instruction 
executed) and the exit point (the last instruction executed). The 
directional edge represents the control flow path [13]. If an EVM 
bytecode is transformed into a CFG, the call relationships 
between the basic blocks can be defined according to the jump 
instructions. EtherSolve[10] parses an EVM bytecode into an 
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Fig. 2. Example of EVM Bytecode and Opcodes 

 

 
Fig. 1. Example of Solidity code 

58



 

 

Opcode sequence and aims to extract an accurate CFG by 
resolving jump targets based on symbolic execution. EtherSolve 
was used in this research to extract the CFG of a smart contract 
EVM bytecode.  

 

D. Multi-label Classification 
Multi-label classification has the characteristic where a 

single instance has one or more labels. Many deep learning 
multi-label classification models have been proposed in various 
areas, such as image classification [14, 15] and text 
classification [16]. Among recent studies on smart contract 

vulnerability detection, ContractWard [17] trained six classifiers 
after extracting N-Gram features from smart contract Opcodes 
and classified six types of vulnerabilities. Although this method 
enables multi-label classification, it has high algorithm 
complexity because it trains multiple classifiers for different 
vulnerabilities. Moreover, this method cannot capture 
simultaneously occurring label dependencies. In this study, we 
utilize multi-label classification to accurately and effectively 
detect various vulnerabilities in smart contracts simultaneously 
by training our model with the CFG generated from Opcodes 
and six labels. 

 

III. METHODS 
This study aims to more accurately detect the presence of 

multiple vulnerabilities in smart contracts. As shown in Fig. 4, 
the proposed vulnerability detection model consists of three 
main steps: graph extraction, sentence embedding, and graph 
classification. 

A. Graph Extraction 
After parsing the source code into Opcodes, the CFG is 

extracted using EtherSolve. Opcodes that change the program's 
control flow are divided into basic blocks, which become the 
nodes in the graph. The JUMP, JUMPI, STOP, RETURN, 
INVALID, and SELFDESTRUCT Opcodes mark the end of a 
basic block, while the JUMPDEST Opcode marks the beginning 
of a new block. Once the code is partitioned into basic blocks, 
edges are designed, and the destination of the jump immediately 
preceding the PUSH opcode becomes the value of the PUSH 
Opcode. If the PUSH Opcode does not exist, the state of the 
stack is updated by executing only the Opcodes that partially 
interact with the jump address to find the destination from the 
symbolic stack. 

 

B. Sentence Embedding 
Each vertex of the CFG corresponds to a sequence of 

program instructions. The Opcode sequences, which are basic 
blocks, were treated and processed as single sentences in this 

 
Fig. 4. The model structure for Ethereum smart contract vulnerability detection 

 

Fig. 3. Control Flow Graph 
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study. Each Opcode sequence is transformed into a fixed-length 
vector by applying Sent2Vec [18], which is a sentence 
embedding technique. Sent2Vec is an unsupervised learning 
model for general sentence embedding that has extended the 
CBOW model of Word2Vec to sentence-level embedding. In 
our study, we obtain the node features of the CFG by 
transforming the Opcode sequences into 128-dimensional vector 
representations using the Sent2Vec model.   

 

C. Graph Classification 
Graph classification predicts the labels of the graph, and it 

requires fusion learning of global information, including the 
structural information of the graph and the attributes of nodes 
and edges. We utilize graph neural networks (GNNs) to train the 
graph structure. After generating fixed-size node features of the 
graph using sentence embedding, we train a GNN model with 
these features. First, we extract the global information through 
the convolutional and pooling layers. After pooling, the global 
information of the graph is aggregated to perform classification. 

 

IV. EXPERIMENTS 
In this section, Ethereum smart contracts with source codes 

verified by Etherscan.io [19] are collected to evaluate the 
performance of our proposed model. We aimed to verify 
whether the proposed method can effectively and 
simultaneously detect six vulnerabilities in smart contract source 
codes.  

A. Dataset 
The experiment was conducted using a smart contract 

dataset verified by Etherscan.io. We randomly collected 4,000 
contracts from publicly available open-source smart contracts 
that were compiled and deployed on the Ethereum network and 
have transaction information. After obtaining the bytecode and 
relevant information, such as address and compiler version, 
from the open-source smart contracts, we processed them to 
remove duplicates. We excluded duplicate smart contracts 
because there are cases where existing smart contracts are reused 
and deployed multiple times.  

 
B. Comparison with the Existing Machine Learning-based 

Methods 
We used the XGBoost classifier, Decision Tree classifier, 

Random Forest Classifier, and SVM classifier as comparison 
models for the same test set. Each model was trained with six 
classifiers for the six vulnerabilities. The six binary 
classification results for each model were consolidated to 
produce the final results. Labels were assigned for all smart 
contracts using Oyente [12]. Each contract consists of six labels 
in a format similar to [0 0 1 0 0 0]. In this study, we assumed 
that the labels generated by Oyente are reliable. Accuracy and 
macro-F1 were selected as the performance evaluation metrics 
for the experiment. Macro-F1 is a measurement that is used to 
evaluate multi-label classification, and the weight of each 
category is identical.   

 Table I shows that the accuracy and macro-F1 score of our 
proposed model are greater than that of the existing classifiers 
for the same data set. Hence, it demonstrates that our proposed 
model has better performance than the existing classifiers.  

 

V. CONCLUSION 
In this study, we proposed a method for detecting multi-label 

vulnerabilities by effectively obtaining the semantic and control 
flow information from smart contract source codes. We 
compared the performance of our proposed multi-label 
vulnerability classification detection model with that of several 
machine learning models, and the results demonstrate that our 
model outperforms the other models. Our proposed approach is 
effective in simultaneously identifying six vulnerabilities in 
smart contracts. In the future, we plan to conduct research on 
detecting vulnerabilities that have not been labeled, besides the 
six vulnerabilities. 
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