

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

GNN-based Ethereum Smart Contract Multi-Label
Vulnerability Detection

Yoo-Young Cheong
Department of Artificial
Intelligence Application
Kwangwoon University

Seoul, South Korea
yycheong@kw.ac.kr

La Yeon Choi
Department of Artificial
Intelligence Application
Kwangwoon University

Seoul, South Korea
chlfkdus123@kw.ac.kr

Jihwan Shin
Department of Artificial
Intelligence Application
Kwangwoon University

Seoul, South Korea
shinjihwan1997@kw.ac.kr

Taekyung Kim
department of Big Data Analytics

KyungHee University
Seoul, South Korea
tk_kim@khu.ac.kr

Jinhyun Ahn
department of Management

Information Systems
Jeju National University

Jeju, South Korea
jha@jejunu.ac.kr

Dong-Hyuk Im
School of Information

Convergence
Kwangwoon University

Seoul, South Korea
dhim@kw.ac.kr

Abstract— Smart contracts are self-executing programs that

are executed on blockchain platforms, and they have been widely
used in recent years. However, malicious exploitation of the
characteristics of smart contracts has become a pressing problem
in blockchain security. Most of the existing methods have the
drawback of detecting only a single type of vulnerability. To solve
this problem, this study proposes a model for detecting multiple
vulnerabilities in smart contracts. We preprocessed the data and
transformed the Opcodes of smart contracts' source code into a
control flow graph. We then extracted node features that are
suitable to be the input of a graph neural network using Sent2Vec
and performed graph classification. The proposed model was
evaluated using real smart contracts, and the experimental results
demonstrated that the proposed model can simultaneously detect
multiple vulnerabilities with high performance.

Keywords—blockchain, smart contract, vulnerability detection,
multi-label classification

I. INTRODUCTION
Blockchain is basically a distributed and shared ledger that

verifies and records transaction-related information without a
central system. Ethereum [1], developed by Vitalik Buterin, is a
blockchain-based open-source distributed computing platform
and operating system that features smart contracts. Many studies
related to the Ethereum network have recently been underway
[2]. Smart contracts are self-executing programs [1] that run on
a blockchain. They encode the terms of a contract using a source
code and can implement arbitrary rules to manage the asset.
Smart contracts simplify complex distributed applications
(Dapp) by enabling automatic execution of the terms of a
contract [3]. Smart contracts are deployed on a blockchain

network according to the consensus protocol, and the rules of
the contract produce the same results regardless of which node
on the blockchain network executes them. A smart contract that
has been mined and uploaded cannot be modified due to
blockchain integrity. In other words, even if a programming
defect has been identified, the uploaded smart contract cannot
be updated. Therefore, a malicious user can exploit an unsafe
smart contract, causing the contract owner to incur a significant
loss [4]. For example, an Ether loss of about 60 million dollars
occurred in June 2016 due to the reentrancy vulnerability
problem [6] of the DAO smart contract [5]. Therefore, the
vulnerability of smart contracts needs to be examined before
they are deployed.

Developers typically test for vulnerabilities in smart
contracts before executing them to ensure their security. Manual
code analysis is inefficient because there are many smart
contracts, and there are various types of vulnerabilities.
Therefore, studies are currently being conducted on the
detection of smart contract vulnerabilities through deep learning
[7][8]. However, most of the previous studies have been based
on the binary classification method, and this method can only
detect whether or not a vulnerability exists. Therefore, this study
utilizes the multi-label classification method to accurately and
effectively detect multiple smart contract vulnerability types to
strengthen the security of blockchain platforms. Our main
contributions are as follows.

• Unlike existing models that perform binary classification
to classify a single smart contract vulnerability, we
propose a multi-label classification model that can
identify multiple types of smart contract vulnerabilities
simultaneously.

57979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

• We can determine the presence of vulnerabilities by
learning both the semantic and structural information of
the source code based on the control flow graph of the
smart contract EVM bytecode.

II. BACKGROUND

A. Solidity Language and Compiling Solidity
 Solidity is an object-oriented high-level language for

implementing smart contracts [9]. Fig. 1 reports an example of
a smart contract to implement a bank written in the solidity
language. The balance on the source code is the internal state of
the smart contract, and the function deposit allows the user to
deposit the arbitrary amount of currency into the virtual account.
In addition, through function withdraw, the user to get back a
certain amount of Ether previously deposited. Solidity provides
various basic elements that can interoperate with the blockchain
environment, and there are various elements that are not in the
examples.

To execute smart contracts written in Solidity on the
Ethereum blockchain, the source code needs to be compiled into
an Ethereum bytecode that can be executed on the Ethereum
virtual machine (EVM). As shown in Fig. 2, the Ethereum

bytecode is represented as a valid hexadecimal sequence, and it
can be parsed into Opcodes, which are minimum instructions
that can be executed by the EVM [10][11]. The complete list of
opcodes with their semantics is defined in Ethereum’s yellow
paper [11]. Every opcode pushes or pops a certain number of
elements from/to the stack, and it can either access memory, get
information about the execution environment or interact with
other blockchain smart contracts.

B. Smart contract vulnerabilities
 Smart contracts are considered vulnerable when an attacker

can exploit them. Six well-known vulnerabilities [12] are
detected in this study.

Integer Overflow and Underflow In Solidity, integer types
have a maximum value and a minimum value. Overflow and
underflow problems occur when the integer value exceeds the
maximum integer value (overflow) or is less than the minimum
value (underflow).

Transaction-Ordering Dependence (TOD) A blockchain
block contains the transaction set, so the blockchain state is
updated each time. At this point, there may be a mismatch
between the state of the smart contract the user intends to call
and the actual state of the smart contract when it is executed.
Only the miner can determine the order of transactions, that is,
the update order. TOD is a vulnerability that occurs as a result
of changing the order of transactions.

Timestamp Dependence This vulnerability occurs when a
contract uses the block timestamp as a condition for calling the
contract to execute an important operation. When mining a
block, the miner sets the timestamp for the block. At this point,
the miner can change this value by about 900 seconds. Therefore,
the miner can exploit this vulnerability if the contract is
dependent on the timestamp.

Mishandled Exception (Call stack’s depth attack) In
Ethereum, a smart contract can call another smart contract via
an instruction or call a function. Here, if the call stack depth
exceeds the threshold value, the contract is terminated, and false
is returned after reverting the contract’s state. Therefore, the
caller contract must handle exceptions by checking whether the
call was properly executed.

Reentrancy Vulnerability When a smart contract calls
another contract, the execution waits until the call is completed.
If the smart contract has a reentrancy vulnerability, an attacker
can exploit this vulnerability to force repetitive execution of a
code like a recursive function call.

C. Control Flow Graph
The control flow graph (CFG) is a directional graph of G=(V,

E). Each vertex represents a basic block, which is a sequence of
program instructions with the entry point (the first instruction
executed) and the exit point (the last instruction executed). The
directional edge represents the control flow path [13]. If an EVM
bytecode is transformed into a CFG, the call relationships
between the basic blocks can be defined according to the jump
instructions. EtherSolve[10] parses an EVM bytecode into an

Identify applicable funding agency here. If none, delete this text box.

Fig. 2. Example of EVM Bytecode and Opcodes

Fig. 1. Example of Solidity code

58

Opcode sequence and aims to extract an accurate CFG by
resolving jump targets based on symbolic execution. EtherSolve
was used in this research to extract the CFG of a smart contract
EVM bytecode.

D. Multi-label Classification
Multi-label classification has the characteristic where a

single instance has one or more labels. Many deep learning
multi-label classification models have been proposed in various
areas, such as image classification [14, 15] and text
classification [16]. Among recent studies on smart contract

vulnerability detection, ContractWard [17] trained six classifiers
after extracting N-Gram features from smart contract Opcodes
and classified six types of vulnerabilities. Although this method
enables multi-label classification, it has high algorithm
complexity because it trains multiple classifiers for different
vulnerabilities. Moreover, this method cannot capture
simultaneously occurring label dependencies. In this study, we
utilize multi-label classification to accurately and effectively
detect various vulnerabilities in smart contracts simultaneously
by training our model with the CFG generated from Opcodes
and six labels.

III. METHODS
This study aims to more accurately detect the presence of

multiple vulnerabilities in smart contracts. As shown in Fig. 4,
the proposed vulnerability detection model consists of three
main steps: graph extraction, sentence embedding, and graph
classification.

A. Graph Extraction
After parsing the source code into Opcodes, the CFG is

extracted using EtherSolve. Opcodes that change the program's
control flow are divided into basic blocks, which become the
nodes in the graph. The JUMP, JUMPI, STOP, RETURN,
INVALID, and SELFDESTRUCT Opcodes mark the end of a
basic block, while the JUMPDEST Opcode marks the beginning
of a new block. Once the code is partitioned into basic blocks,
edges are designed, and the destination of the jump immediately
preceding the PUSH opcode becomes the value of the PUSH
Opcode. If the PUSH Opcode does not exist, the state of the
stack is updated by executing only the Opcodes that partially
interact with the jump address to find the destination from the
symbolic stack.

B. Sentence Embedding
Each vertex of the CFG corresponds to a sequence of

program instructions. The Opcode sequences, which are basic
blocks, were treated and processed as single sentences in this

Fig. 4. The model structure for Ethereum smart contract vulnerability detection

Fig. 3. Control Flow Graph

59

study. Each Opcode sequence is transformed into a fixed-length
vector by applying Sent2Vec [18], which is a sentence
embedding technique. Sent2Vec is an unsupervised learning
model for general sentence embedding that has extended the
CBOW model of Word2Vec to sentence-level embedding. In
our study, we obtain the node features of the CFG by
transforming the Opcode sequences into 128-dimensional vector
representations using the Sent2Vec model.

C. Graph Classification
Graph classification predicts the labels of the graph, and it

requires fusion learning of global information, including the
structural information of the graph and the attributes of nodes
and edges. We utilize graph neural networks (GNNs) to train the
graph structure. After generating fixed-size node features of the
graph using sentence embedding, we train a GNN model with
these features. First, we extract the global information through
the convolutional and pooling layers. After pooling, the global
information of the graph is aggregated to perform classification.

IV. EXPERIMENTS
In this section, Ethereum smart contracts with source codes

verified by Etherscan.io [19] are collected to evaluate the
performance of our proposed model. We aimed to verify
whether the proposed method can effectively and
simultaneously detect six vulnerabilities in smart contract source
codes.

A. Dataset
The experiment was conducted using a smart contract

dataset verified by Etherscan.io. We randomly collected 4,000
contracts from publicly available open-source smart contracts
that were compiled and deployed on the Ethereum network and
have transaction information. After obtaining the bytecode and
relevant information, such as address and compiler version,
from the open-source smart contracts, we processed them to
remove duplicates. We excluded duplicate smart contracts
because there are cases where existing smart contracts are reused
and deployed multiple times.

B. Comparison with the Existing Machine Learning-based

Methods
We used the XGBoost classifier, Decision Tree classifier,

Random Forest Classifier, and SVM classifier as comparison
models for the same test set. Each model was trained with six
classifiers for the six vulnerabilities. The six binary
classification results for each model were consolidated to
produce the final results. Labels were assigned for all smart
contracts using Oyente [12]. Each contract consists of six labels
in a format similar to [0 0 1 0 0 0]. In this study, we assumed
that the labels generated by Oyente are reliable. Accuracy and
macro-F1 were selected as the performance evaluation metrics
for the experiment. Macro-F1 is a measurement that is used to
evaluate multi-label classification, and the weight of each
category is identical.

 Table I shows that the accuracy and macro-F1 score of our
proposed model are greater than that of the existing classifiers
for the same data set. Hence, it demonstrates that our proposed
model has better performance than the existing classifiers.

V. CONCLUSION
In this study, we proposed a method for detecting multi-label

vulnerabilities by effectively obtaining the semantic and control
flow information from smart contract source codes. We
compared the performance of our proposed multi-label
vulnerability classification detection model with that of several
machine learning models, and the results demonstrate that our
model outperforms the other models. Our proposed approach is
effective in simultaneously identifying six vulnerabilities in
smart contracts. In the future, we plan to conduct research on
detecting vulnerabilities that have not been labeled, besides the
six vulnerabilities.

ACKNOWLEDGMENT
The work was supported by Institute of Information &

communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.2021-0-
00231, Development of Approximate DBMS Query
Technology to Facilitate Fast Query Processing for Exploratory
Data Analysis, 50%). This work was also supported by the
National Research Foundation of Korea(NRF) granted by the
Korea government(MSIT) (No.NRF-2021R1F1A1054739,
50%).

REFERENCES
[1] C. Dannen, Introducing Ethereum and Solidity: Foundations of

Cryptocurrency and Blockchain Programming for Beginners, 1st ed.,
Apress, 2017.

[2] Y. Y. Cheong, G. T. Kim, and D. H. Im. "Ethereum Phishing Scam
Detection based on Graph Embedding and Semi-Supervised Learning."
KIPS Transactions on Computer and Communication Systems, vol. 12,
no. 5, pp. 165-170, 2023.

[3] A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart
Contracts and Dapps. Sebastopol, CA, USA: O’Reilly Media, Inc., 2018.

TABLE I. VULNERABILITY DETECTION RESULTS

60

[4] Z. A. Khan and A. Siami Namin, "Ethereum Smart Contracts:
Vulnerabilities and their Classifications," 2020 IEEE International
Conference on Big Data (Big Data), Atlanta, GA, USA, 2020, pp. 1-10.

[5] The DAOsmart contract,Website, 2016. [Online]. Available: http://
etherscan.io/address/ 0xbb9bc244d798123fde783fcc1c72d3bb8c189413

[6] D. Z. Morris. Blockchain-based venture Capital Fund Hacked for $60
Million. 2016. [Online]. Available: https://fortune.com/2016/06/18/
blockchain-vc-fund-hacked/

[7] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu and X. Wang, "Combining
Graph Neural Networks With Expert Knowledge for Smart Contract
Vulnerability Detection," in IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 2, pp. 1296-1310, 1 Feb. 2023

[8] P. Qian, Z. Liu, Q. He, R. Zimmermann and X. Wang, "Towards
Automated Reentrancy Detection for Smart Contracts Based on
Sequential Models," in IEEE Access, vol. 8, pp. 19685-19695, 2020.

[9] Ethereum. Solidity documentation. Website. [Accessed: 2023-09-21].
[Online]. Available: https://solidity.readthedocs.io/

[10] F. Contro, M. Crosara, M. Ceccato and M. D. Preda, "EtherSolve:
Computing an Accurate Control-Flow Graph from Ethereum Bytecode,"
2021 IEEE/ACM 29th International Conference on Program
Comprehension (ICPC), Madrid, Spain, 2021, pp. 127-137

[11] G.Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32,
2014.

[12] L. Luu, D. H Chu, H. Olickel, P. Saxena, and A. Hobor, “Making Smart
Contracts Smarter,” 2016 ACM SIGSAC Conference on Computer and

Communications Security (CCS '16), New York, NY, USA, 2016, pp.
254–269.

[13] A. Viet Phan, M. Le Nguyen and L. Thu Bui, "Convolutional Neural
Networks over Control Flow Graphs for Software Defect Prediction,"
2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI), Boston, MA, USA, 2017, pp. 45-52.

[14] D. Huynh, E. Elhamifar. “Interactive multi-label cnn learning with partial
labels,” IEEE/CVF Conference on Computer Vision and Pattern
Recognition(CVPR), Virtual, 2020, pp. 9423-9432.

[15] Z. M. Chen. X. S. Wei. P. Wang, and Y. Guo. “Multi-label image
recognition with graph convolutional networks,” IEEE/CVF conference
on computer vision and pattern recognition(CVPR), Long Beach, CA,
USA, 2019, pp. 5177-5186.

[16] H. Alhuzali. S. Ananiadou. “SpanEmo: Casting multi-label emotion
classification as span-prediction,” 2021. [Online]. Available:
https://arxiv.org/abs/2101.10038.

[17] W. Wang, J. Song, G. Xu, Y. Li, H. Wang and C. Su, "ContractWard:
Automated Vulnerability Detection Models for Ethereum Smart
Contracts," in IEEE Transactions on Network Science and Engineering,
vol. 8, no. 2, pp. 1133-1144, 1 April-June 2021

[18] M. Pagliardini. P. Gupta, and M. Jaggi. “Unsupervised learning of
sentence embeddings using compositional n-gram features,” 2017.
[Online]. Available: https://arxiv.org/abs/1703.02507.

[19] Etherscan.io. Etherscan. [accessed: 2023-09-21]. [Online]. Available:
https://etherscan.io/

61

