979-8-3503-3094-6/24/$31.00 ©2024 IEEE

A Game Engine-Based Visualizer for ns-3
Simulations

Hyeokjae Lee, Woochan Yoon and Hyogon Kim

Abstract—ns-3 is an extremely popular and still evolving simu-
lation platform that enables flexible experimentation for virtually
any modern networking and communication systems. One aspect
that needs improvement, however, is its visualization utility. The
best-known visualizer for ns-3 is NetAnim, but this event-based
animator does not provide the most efficient visualization service.
In this paper, we discuss a new, frame-based visualizer for ns-
3 called UVNS. An interesting feature of the visualizer is that
it utilizes Unity, a cross-platform game engine. Owing to the
breakneck speed of game technology advancement, the speed
and visual components of the engine are highly optimized. By
exploiting them, UVNS can greatly facilitate the animation of ns-
3 simulation log both in performance and in presentation quality.

Index Terms—ns-3, network simulation, animation, Unity,
game engine

I. INTRODUCTION

S-3 [1] is an extremely popular and continuously evolv-

ing simulation platform that enables experimentation of
virtually any modern networking and communication systems.
One disappointing aspect is its representative visualization
tool, NetAnim [1]. NetAnim is a standalone, Qt5-based soft-
ware executable [2] that uses a trace file generated during an
ns-3 simulation to display the topology and animate the packet
flows between nodes. Unfortunately, it has multiple drawbacks.
First, the simulation events in the log file can only be processed
in entirety. It does not have a way to selectively process and
visualize particular events. Second, the animation is strictly
event-based. Therefore, when there is a large volume of logged
events to be shown, NetAnim would severely slow down or, in
extreme cases, crash before completion. Third, there is various
information it does not show in animation such as queue size
fluctuations.

Although the ability to animate large-scale simulated sys-
tem dynamics is a highly desirable characteristic, it is not
easy to achieve, as NetAnim case tells us. It requires the
visualizer to handle large memory and computation resources
efficiently. We found that game engines that typically deal with
a large number of dynamic entities satisfy the requirement
well. Therefore, we implemented a prototype visualizer based
on Unity [3], a cross-platform game engine. Owing to the
breakneck speed of game technology advancement, the speed
and visual components of the engine are highly optimized. By
exploiting them, our prototype called Unity-based Visualizer
for ns-3 (UVNS) can greatly facilitate the animation of ns-3
simulation log both in performance and in presentation quality.
Our prototype implementation can animate the simulation log

363

with a large number of nodes and in-flight packets without
slowdown, for which NetAnim experiences difficulties.

II. IMPLEMENTATION

Fig. 1 shows how the UVNS interfaces with other elements
in the ns-3 simulation. The user provides the simulation
model in a C++ script, and ns-3 executes the model. During
execution, a log file in XML format can be produced. After the
simulation is completed, UVNS dynamically and immediately
instantiates animation objects such as nodes and packets while
parsing down the log file. Using the Unity engine, UVNS then
visualizes the packet-level dynamics in animation. Below, we
describe these steps in more detail.

User
Simulation
Model/ UVNS
Script
l ns-3 J [UnityJ

Fig. 1. UVNS

A. Simulation log creation

UVNS utilizes the same module
(animation—-interface.cc) in ns-3 that is used
by NetAnim to create the simulation log. The log is in
XML format, and consists of tags and attributes, where tags
represent the type of information, and attributes represent
the content. In the current version, UVNS only shows the
information regarding nodes, packets, routing, queue size
and the size of TCP socket buffers at each node. Any other
information can also be utilized for visualization as long as
it is available in the simulation log file, either by modifying
the animation-interface.cc or by adding tracking
functions to the scenario. But it is left for a future work
because this paper is focused on showing the qualitative
difference game engines can make in the visualization of
large-scale ns-3 simulations.

B. Log processing

The fact that NetAnim uses the entire log created by
animation-interface.cc for animation has a signifi-
cant issue. Potentially unnecessary information for animation
such as each node’s IP address and routing details may be
included in the log, making the XML log file excessively vo-
luminous. It can cause extremely slow animation in NetAnim.

ICOIN 2024

However, it is easier to address this problem in UVNS, by
selectively creating objects that the user wants to examine
during load and then by showing them in animation. This
feature greatly contributes to the scalability of UVNS.

UVNS also exploits software optimizing features in Unity
for object creation during load, in particular, Prefab. Prefab
is originally a construction term, referring to factory-made
components that can be assembled on-site to complete a
building. In Unity, it is used in a similar sense, because Unity
Prefabs are created in advance in the desired form, stored,
and can be copied as instances when needed, allowing for
multiple reuses. The advantages of using Prefabs in UVNS
are as follows:

o Objects can be instantiated from Prefabs without the need
to create them beforehand or modify the code. Also, it
reduces the memory size to store objects.

o Modifying objects is straightforward. When creating an
instance, it copies a Prefab as its parent. Therefore,
modifications to the Prefab automatically apply to all
instances, making it convenient to change the visuals or
structure of objects without modifying each individual
object separately.

Therefore, we created Prefabs for nodes and packets and
instantiated them in the code, allowing them to be dynamically
loaded into animations at runtime.

We added C# scripts as Unity components to the Prefabs.
Using the scripts, we can exert a fine control over individual
objects while exploiting Prefabs, by specifying different values
for the public variables in the script. Then, each object instance
created through the Prefab can store different data and perform
different actions. We apply this feature to objects that behave
mostly the same but have slight differences. For example,
packets may have the same appearance, origin and destina-
tion, but times of departure and arrival are all different. To
accommodate such individual differences in attributes, public
variables written in the C# script in the components are used to
store the attributes from the XML document for each instance
when running the animation.

C. Animation

When running animations in Unity, we create animation
frames with Unity deltaTime as the time gap between consecu-
tive frames. The advantage is that by changing the TimeScale
parameter value, a feature built into Unity that controls the
speed of time in game play, we can adjust deltaTime in UVNS.
This allows us to observe the animation in any speed we want
and even dynamically change the speed during animation,
giving us high flexibility in examining the simulated system.

Once deltaTime is determined by the TimeScale parameter,
it controls the animation speed as illustrated in Fig. 2. If there
are multiple rendering events (e.g. queue size fluctuation) in
one deltaTime, only the last one is rendered while the others
are ignored. Note that a rendering event may concur with a
simulation event or may be independent. The packet count in
the queue is an example of the former. In the event-based vi-
sualizer like NetAnim, all rendering events must be displayed.

However, in UVNS, only one rendering event is displayed per
deltaTime. For example, if the count went up from O to 100
in 100 packet enqueue events, all 100 rendering events should
be displayed in NetAnim. On the other hand, if the animation
speed is set to be high so that all 100 events takes place in one
deltaTime, only the last count (i.e., 100) is displayed in UVNS.
We call this feature of UVNS “frame-based visualization” as
opposed to the event-based visualization in NetAnim. Multiple

deltaTime

Packet A

Packet B

= Packet Position | Frame

(1 Event

% Visible Event

Fig. 2. Optimization in UVNS frame-based visualization

rendering events can correspond to a single simulation event.
For example, the movement of a packet along a link requires
multiple rendering events although there is only one packet
transmission event. Again, many of these rendering events can
be ignored if deltaTime is large, i.e., animation speed is high.

Fig. 3 shows the speed bar and the video progress bar at
the bottom of UVNS animation window (which is the “game
window” in Unity). On the left is the Non-Terrestrial Network
(NTN) scenario simulation based on Low Earth Orbit (LEO)
satellite constellation where the movements of hundreds of
satellites along with packet transmissions are simulated. On
the right is TCP congestion control and pacing model running
on a dumbbell topology. The speed bar sets the aforementioned
TimeScale parameter in UVNS animation so that the animation
speed (i.e., deltaTime) can be dynamically changed. Therefore,
by separating the notions of a simulation event and a rendering
event, UVNS can achieve its efficiency.

In addition to raw animation speed, consistency is another
strength of UVNS animation. In NetAnim, the animation speed
is directly affected by viewport selection. If there are only
a small number of objects (e.g. nodes) in the viewport, the
simulation speed approaches its potential maximum because
the actions regarding the objects not selected in the viewport
need not be rendered. If there are many objects, however, it
becomes slow because of many events that should be rendered.
Therefore, it is impossible to provide a consistent animation
speed that a user may want to set at. In UVNS, however,
the simulation speed is consistent over all viewport sizes and
locations, as the progression of animation is flexibly controlled
by the TimeScale parameter. Combined with the efficiency, it
makes UVNS simulation much more consistent than NetAnim.

D. Simulation inspection

For inspecting individual objects during animation, UVNS
exploits Unity inspector window that is originally used for

364

Speed
7.10384 «

(a) LEO-based file transfer in 3GPP NTN scenario

[e —
n []
é ENEEEEE ENEEE I DN N N . -.3
f == - =g
u
u n

Speed
1.023949

);

(b) TCP pacing for congestion control in dumbbell topology

Fig. 3. Screen captures of UVNS animation examples; circles = data segments, squares = acknowledgements

monitoring and editing individual objects in a game program.
Through inspector windows, UVNS can show the informa-
tion regarding a selected node or packet that appear in the
animation window. In Unity-based games, we can monitor
any objects to which we attached a script. Therefore, we will
extend the inspector facility to other objects than nodes and
packets in future versions of UVNS. Fig. 4 shows that UVNS
can display the details of selected node and packet in the
inspection window. Currently, they appear on the right side
of the animation window when activated. In the future, we
will implement the inspection windows to appear inside the
animation window for more direct presentation.

Script SatObject
Node_id 342
Position X -150 Y 100 Z20
Txbuffer == TxSlider (Slider) @
Rubuffer == RxSlider (Slider) @
Cw == CwSlider (Slider) @
Current_Time 3.186496
Current_Tx_Size 523
Current_Rx_Size 497
Current_CW_Size 166

(a) Node
Seript PacketObject
Start_Position X -150 Y 100 Z (0
End_Position X 0 Y 150 Z|0
Start_Time 3.180156
End_Time 3.198142
Duration 0.01798606
Start_node ID 342
End_node ID 123
Current_Time 3.186496

(b) Packet

Fig. 4. UVNS inspector windows

The code for the initial UVNS prototype is available on
Github [4].
III. PERFORMANCE EVALUATION

We compare the speeds of NetAnim and UVNS for the
log processing that takes place during initial loading and

for the animation execution itself. When UVNS reads in the
simulation log, it creates only the objects of user’s interest
and does it dynamically as they appear in the log. In NetAnim,
however, it creates all objects associated with recorded events.
In case there are a large number of events in the simulation,
NetAnim can create huge overhead even though the animation
does not need all objects because the user wants to see only
a fraction of them. The NTN scenario in Fig. 3(a) is a good
example, so we use this case for the performance comparison
in this section. In the scenario, more than 630 satellites exist
in the system, whose positions constantly change. Although
only six nodes are involved in actual communication, NetAnim
spends excessive amount of time to compute and render the
movements of the satellites. We found that NetAnim animation
takes incomparably long time. So, for the sake of simply
making the comparison feasible between NetAnim and UVNS,
we pre-process the log file for NetAnim so that NetAnim can
only show the selected six nodes. We stress that this pre-
processing step has been performed separately by us, as it
is not provided in NetAnim.

A. Load speed

Since all the scripts for parsing XML files and generating
the necessary objects in UVNS is written in C#, the added
pre-processing for NetAnim was also programmed in C#. With
pre-processing for NetAnim, the load times become compara-
ble for NetAnim and UVNS (Fig 5). Across simulation times,
UVNS still exhibits slightly shorter times. With the load speed
comparable and relatively small, the animation time becomes
the decisive factor.

B. Animation speed

Fig. 6 shows the stark differences in the wall-clock anima-
tion times for 5, 10, 20, and 30 seconds of simulated LEO
constellation system. For a mere 30 seconds-long simulation,
NetAnim takes as long as 6,800 seconds (1.9 hours) to play
the animation. We found that the time for NetAnim without
pre-processing is at least four times longer than with pre-
processing. In contrast, it is only 30 seconds in UVNS, i.e.,

365

I I
UVNS(upload) ——
16 H UvNS(download) —y—
14 1 NetAnim(upload) —x—
NetAnim(download) —5—

o,
[1}]
E
@ 12 |
£
2 10 i
[i1]
8 8 :
g 6 .
£ 4 .
s
s 2 —
0F kK A y: 3 %
5 10 15 20 25 30

log length [s]

Fig. 5. Load time comparison; pre-processing applied to NetAnim

more than two orders of magnitudes smaller. In fact, UVNS
plays the animation along exactly on the simulated time axis.

104§ I I I I

UVNS(upload) ——
UVNS(download) —3¢—
NetAnim(upload) —¥—

NetAnim(download) —5—

1034

102 |

animation time [s]

A
=4
\

100 I I I I I
5 10 15 20 25

log length [s]

(4]
o

Fig. 6. Animation time comparison; note: y-axis is in log scale

For upload, where bandwidth is limited and the number of
in-flight packets is small, the performance gap between Ne-
tAnim and UVNS is relatively small. However, for download
where the number of in-flight packets is large, the performance
difference is more than two orders of magnitude. This is
because the animation for a packet transmission event is not
optimized in NetAnim (for each packet transmission NetAnim
always renders the packet position in five times), whereas it
is in UVNS, mainly owing to the frame-based animation.

C. Miscellaneous

Other than the inefficiency caused by full event-based
animation, we found through extensive experimentation that
there are other more obscure reasons why NetAnim is slower
than UVNS. First, for graphical user interface (GUI), NetAnim
uses QtS5 [2]. Although NetAnim is programmed to support
the minimum time gap of 1 us between consecutive events,
Qt only allows a gap of 1 ms. Due to this limitation, NetAnim
cannot process more than 1,000 events per second at the max-
imum. Second, NetAnim is not programmed to use graphical
processing unit (GPU). All rendering operations rely on CPU
cores. In contrast, being a game engine, Unity actively uses

GPU for rendering, offloading UVNS of the rendering com-
putation. Furthermore, load management across CPU cores in
NetAnim has room for improvement. For example, Fig. 7(a)
shows that only a single CPU core out of sixteen is being
exploited in the heavy load NTN scenario whereas two cores
are employed in the relatively lighter TCP pacing scenario
(Fig. 7(b)).

(a) NTN scenario

(b) TCP pacing scenario

Fig. 7. CPU core utilization in NetAnim; other 8 cores are not utilized

D. Summary

From the discussions above, we argue that exploiting game
engines for animating packet level simulation is highly de-
sirable. The strength of UVNS that can handle large number
of objects and events more efficiently is expected to become
important in the most advanced communication scenarios
such as high-speed networks (where large number of packet
events play out at any instant), LEO constellations with a few
thousand satellites, and vehicle-to-everything (V2X) commu-
nications where hundreds of vehicles typically participate in
communication. In the future, we plan to expand the capa-
bility of UVNS to provide richer information on the logged
simulation trace, while further maximizing the efficiency.

IV. CONCLUSION

Although ns-3 is a popular, versatile, and evolving sim-
ulation platform, there is much room for improvement in
terms of its animation utility. This paper introduces an initial
prototype of a new animation utility that is based on the Unity
game engine platform. Owing to the inherent optimization
features of the engine, large-scale network simulation is easily
managed with high execution speed and animation quality.

ACKNOWLEDGMENTS

This research was supported by the MSIT (Ministry of
Science and ICT), Korea, under the ICT Creative Consilience
program (IITP-2023-2020-0-01819) supervised by the IITP
(Institute for Information & communications Technology Plan-
ning & Evaluation).

REFERENCES
[1] nsnam, “ns-3 network simulator,” [Online]. Available at
https://www.nsnam.org.
[2] “Qt Documentation Archives,” [Online]. Available at
https://doc.qt.io/archives/qt-5.5/.
[3] Unity, “Unity Download Archive,” [Online]. Available at

https://unity.com/releases/editor/archive.
[4] H.Lee, W. Yoon, H. Kim, “Unity-based Visualization of ns-3 Simulation,”
[Online]. Available at https://github.com/Seaweed Ashes/UVNS.

366

