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Abstract—This paper presents a novel method for estimating
the states of upstream networks by analyzing TCP flows at key
traffic aggregation points in home and enterprise environments.
Utilizing a machine learning framework that incorporates fre-
quency domain features from RTT time series, we conducted
a preliminary evaluation on a simulated virtual network. The
results demonstrate the method’s capability to accurately classify
the network state of a single flow within a basic model. Our
findings suggest the method’s potential for broader application
in network state estimation.

Index Terms—tcp flow, passive monitoring, network state
estimation, spectral analysis

I. INTRODUCTION

In the current landscape of our fast-evolving information
society, the Internet has become indispensable to daily op-
erations. Consequently, the ability of network administrators
to swiftly identify and address network failures is paramount.
Yet, as network architectures grow in complexity, the chal-
lenge and responsibility of detecting faults have significantly
intensified.

Since the Internet is composed of networks of organizations
around the world, communication is rarely completed on a
single network alone, and it is common for communications
to pass through multiple networks. When a user perceives a
degradation of network quality, the candidates for the cause are
all the networks on the communication path. In a stub network
such as a home or enterprise, when a quality degradation
occurs, the administrators can use SNMP [6] or other means
to check the status of the communication devices under their
control, but it is not easy to obtain information about the
network operated by another administrator. Therefore, it is
not easy for the administrator to identify the cause of quality
degradation. Thus, research is being conducted to estimate the
network state by observing the state of protocols that manage
end-to-end communication, such as TCP, instead of observing
the state of communication devices.

There are two methods for measuring network traffic: active
measurement, in which new traffic is generated for inves-
tigation, and passive measurement, in which existing traffic
is observed. Active measurement is often used for end-to-
end quality measurements, such as Iperf [5], but it can place
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a heavy load on the network as the measurement traffic
increases. Therefore, research is underway to use passive
measurements to analyze network traffic. Specifically, some
studies have passively measured multiple TCP flows to capture
traffic characteristics [4] or to identify bottlenecks [9]. Some
focus on the behavior of a single TCP flow to estimate
its TCP variant [3]. However, few studies have been found
that estimate problems in the unmanaged network by passive
measurement of the managed network.

It is very meaningful to be able to estimate the state of the
upstream network by measuring the managed network. When
the quality of communication deteriorates, analyzing each flow
one by one only tells us that the cause is somewhere on the
path of each flow. However, by analyzing flows that share a
common path, if a degradation of communication quality is
confirmed for those flows, it can be inferred that some failure
has occurred on that common path. The status of each flow can
be estimated with high accuracy by analyzing the time series
of sequence number, acknowledgement number, and window
size in the TCP header in detail [15], but it is difficult to
perform detailed analysis for a huge number of flows.

Therefore, we propose a method to estimate the upstream
network status by monitoring multiple TCP flows at the
boundary router, which is the traffic aggregation point of
the managed network, for home and enterprise networks.
First, multiple TCP flows are passively measured, and the
information stored in their headers is analyzed for each flow.
By comprehensively evaluating this information, we attempt to
identify the cause of performance degradation on the upstream
network paths commonly traversed by the flows. Focusing on
the periodicity of TCP congestion control, the time-series data
obtained is dropped into frequency domain by performing
a spectral analysis using the Lomb-Scargle method. Strong
frequency components are extracted as features, and the state
of the network is inferred by machine learning. However, it is
not easy to prepare supervised data because it is rare to identify
the cause of performance degradation in a real network. Then,
we have used NS-3 to simulate various events in the network
and have created the data sets necessary for machine learning.

In this paper, we focus on the flow-by-flow analysis part of
the proposed method and evaluate our approach by creating
a dataset with the simplest virtual network as a preliminary
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experiment. Although there are numerous considerations to
take into account, we have confirmed that it is possible to
classify the state of the network with high accuracy in a simple
model.

The remainder of this paper is structured as follows. Section
II describe the technology behind this paper and related
research. In Section III, we describes the proposed method,
and Section IV explains the structure of the preliminary ex-
periments and their evaluation. Finally, Section V summarizes
the paper.

II. RELATED WORK

We will discuss studies that use passive measurements of
TCP, where the observation point is an intermediate node
rather than an end host. There are two main types of research
on passive measurement for intermediate nodes. One is to
measure a single flow and analyze the behavior of that flow [3],
[16], and the other is to measure multiple flows and analyze
the state of the entire network [4], [8], [9]. We provide a brief
introduction to some related studies.

Estimation of congestion window size: They employed
Byte-in-Flight, calculated from the TCP headers, as a feature
and attempted congestion window size estimation using en-
semble machine learning algorithms [3]. The results showed
that the predictions were highly accurate for multiple types of
TCP variants.

Estimating RTT using unidirectional packet traces.: Since
network operators are not always able to observe traffic in
both directions, a method of estimating RTT using only traffic
in one direction was studied [16]. Among the methods for
estimating RTT, it is shown that the method of spectral analysis
of packet arrival intervals using Lomb periodgram is more
advantageous than the method using autocorrelation. However,
the method using the Lomb periodgram also only roughly
estimated the RTT, and it was confirmed that it is difficult
to accurately estimate the RTT.

Analysis of mobile network traffic characteristics: A study
[4] analyzed the ToD (Time of Day) effect by performing
passive measurements on a mobile network. The number of
sessions, session size, RTT, etc. were extracted from multiple
TCP flows and the relationship with ToD was shown. For
periodicity analysis, Lomb-Scargle periodograms, which are
used for spectral analysis in the field of astronomy, were used
to confirm that there is a strong periodicity in a day.

Identification of wireless LAN bottlenecks by analyzing
TCP at traffic aggregation points: One study [9] estimates
bottlenecks caused by wireless LANs by passive measurement
on the backbone router, which is the aggregation point of the
network. If a bottleneck exists in the management network,
the round-trip delay at the observation point depends on the
bottleneck delay, and the round-trip delay is expected to in-
crease. By assuming this property, the existence of bottlenecks
in the managed network was estimated. The location of the
bottleneck is also determined by integrating the information
from the wireless APs.

Estimation of bottleneck links using per-flow packet loss rate
and their paths: A study [8] estimated bottleneck links using
per-flow loss rates and their routes. In addition to identifying
the bottleneck link, they also attempted to identify the cause of
the bottleneck by linking TCP retransmissions and duplicate
acknowledgements.

III. PROPOSED METHOD

This section describes a method for estimating the state
of upstream networks by monitoring multiple TCP flows
in communication devices that serve as traffic aggregation
points connecting to upstream networks, targeting home and
enterprise networks. The main idea and flow of the proposed
method is described and detailed in subsections.

Edge Router

Servers

Clients

Administrator

Internet Internet

Upstream 
ISP

Access Link

Stub Network

Upstream Network

Common Path

Fig. 1: Overview of the proposed method

Figure 1 is a overview diagram of the Internet including stub
networks. Consider a client in the stub network connecting
to a server in the upstream network using TCP. When they
are connected by a yellow route as shown in Figure 1, the
three routes will have a common route on the upstream ISP.
If ”event” occurs on the common path, its impact occurs
on all three communications, causing degradation of the
network’s communication performance. However, ”event” is
defined as the event that causes the performance degradation
of the network, and this term is used in the discussion for
simplicity. Using this causality, when a degradation of network
performance is detected in each communication, it is judged
that ”event” has occurred in the common path, and the state
of the upstream network is estimated.

The flowchart of the proposed method is as follows, and is
summarized as a figure in Figure 2.

1) Reproduce the situation of the network on the simulator.
2) Collect all packets by packet capture at traffic aggrega-

tion points in the simulator.
3) Select flows from the collected packets that are suitable

for inference.
4) Collect data for each feature from the selected flows.
5) Apply the necessary preprocessing to the features.
6) Train machine learning models.
7) Infer the state of the network for each flow using the

learned model.
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8) Estimate the state of the upstream network from the
observation point by examining common network con-
ditions for multiple flows
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Fig. 2: Flowchart of the proposed method

In Section III-A, we delve into the underlying causes of
network performance degradation and outline the scope of our
analysis on the resulting phenomena. Moving on to Section
III-B, we shift our focus to the creation of datasets for training
machine learning models. Section III-C is dedicated to eluci-
dating the targets of passive measurement, while Section III-D
provides insights into the criteria guiding our selection of flows
for analysis from the collected traffic. Within Section III-E, we
outline the process of feature extraction from the measured
data, and Section III-F takes you through the methodology
we employ to classify network states using machine learning
techniques.

A. Assumption of Factors that Degrade Network Performance
and Scope of its Detection

The target scope of detection is shown in Figure 3. Since
the state is estimated using the common paths of TCP flows,
the target scope is the paths that a certain number of flows
pass through in common. Therefore, the scope is from the
connection point with the upstream network to the entrance
of each Internet. The root causes of communication qual-
ity degradation could be network congestion, communication
equipment failure, or external factors. These phenomena cause
temporary increases and fluctuations in packet loss and delay,
which degrade the quality of communication.
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Fig. 3: Assumed scope of ”event”

B. Dataset

While it is possible to generate unsupervised data by
collecting traffic in real networks, it is extremely difficult to
collect supervised data that reflects actual network conditions.
Therefore, supervised data is collected by modeling and simu-
lating the real network. When constructing a virtual network,

it is necessary to consider bandwidth, propagation time, and
packet loss rate for lines, packet queue size and Active Queue
Management (AQM) for routers, TCP congestion control al-
gorithms and applications using TCP for end hosts. The above
parameters are appropriately selected to simulate the situation
of the target network.

C. Target for Measurement

To obtain information on the upstream network, it is prefer-
able to measure routers that are connected to the upstream
network and aggregate traffic. Therefore, we target broadband
routers in home networks and backbone routers in enterprise
networks. The target port for packet capture is the port con-
nected to the upstream network. In addition, the protocols to
be measured are only TCP, which has congestion control and
whose behavior can be observed from its header information.

Among the fields of the TCP header, the sequence number,
the acknowledgment number, the window size, and the value
of the Timestamp option are useful for analyzing the network
state. RTT and Byte-in-Flight, which can be inferred from
these values, are also included in the analysis.

D. Flow Selection

It is difficult to estimate the state of a flow that has experi-
enced little or no communication performance degradation. On
the other hand, flows that send out data to fill the bandwidth
as much as possible, such as bulk transfer, are considered
to be strongly affected by network conditions. Therefore, we
consider flows that perform bulk transmission as candidates
for analysis.

E. Feature Extraction

Since time-series data is unwieldy for machine learning that
is not deep learning, it must be converted to features with a
small dimensionality. Since it is known that TCP during steady
state has a periodicity, it is converted from the time domain
to the frequency domain. Since the time-series data that can
be obtained from the TCP header is unequally spaced, the
Lomb-Scargle method [7] is used to convert it to the frequency
domain. By using values with large amplitude in the frequency
domain as feature values, we can extract strong periodicity in
the time series data as representative.

For measurement data that cannot be meaningfully con-
verted to the frequency domain, the maximum value, average
value, minimum value, etc. are used as feature values. Mea-
sured values such as segment counts are also considered as
feature values.

F. Machine Learning Classification

The machine learning model is trained using the extracted
features to classify the state of the network for each flow.
Inference of the upstream network state is performed by
majority voting of the inference results of the selected flows.
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IV. PRELIMINARY EXPERIMENTS AND DISCUSSION

This section describes the configuration of the preliminary
experiments of the proposed method, and provides an evalua-
tion and discussion of the results. We simulated the simplest
network configuration, created a dataset, and comprehensively
evaluated the inference accuracy and other aspects of the
machine learning model for a single flow.

A. Modeling Networks in Preliminary Experiments

In this preliminary experiment, we assume a situation where
large files are downloaded from an upstream network. The
network can then be divided into an upstream network and
a stub network, each of which is described below. The stub
network consists of end hosts and communication devices that
aggregate their communications, and can be modeled as shown
on the right side of Figure 4. The upstream network consists
of servers and the Internet, which is the path from the servers
to the stub network. Therefore, it can be modeled as shown
on the left side of Figure 4. For the following explanations,
we define server-side delay as the delay between the server
and the Internet in Figure 4.

Figure 5 shows the occurrence of ”event” that is the subject
of this study in the modeled network. The assumed scope of
the ”event” in Figure 3 is encompassed by the Internet in
Figure 4. Therefore, ”event” in the modeled network can be
considered to occur at a single node, the Internet. The passive
measurement is performed on the router that connect to the
Internet, as shown in Figure 5 .

Router

Servers

Internet

Clients

Data

Upstream Network Stub Network

Access Link

Fig. 4: Modeling the network

Passive Measurement

Machine
Learning

Data

Quality Decline
Events

Fig. 5: Occurrence of ”event”
in the model network

B. Testbeds in Preliminary Experiments

The network modeled in Section IV-A is simulated using
ns-3 [2]. In this experiment, we reproduced normal network
conditions, congestion in a network containing only TCP
flows, and network failure due to link transmission errors. In
each network condition, the simulator was run for 30 seconds
and data was collected. The configuration of the network used
in the simulation is shown in Figure 6, and the parameters of
the link are shown in Table I. This configuration replaces the
Internet portion of the network modeled in Figure 4 with a
router. The above three network conditions are simulated by
setting the parameters of this network configuration accord-
ingly. Sections IV-B1 ∼ IV-B3 describe the specific settings
of the above three models in the simulator.

Link0-8

Link0-1

Link0-2

Link0-3

Link0-4

Senders

Router

node2

node4

node3

node0

node8

Link1-9

Link1-7

Link1-6

Link1-5
node5

node7

node6

node9

Router

node1

Receivers

End Hosts: TCP
for Nomal/Link Error NW

End Hosts: TCP
for Congestion NW

Fig. 6: Virtual Network Topology

TABLE I: Link settings

Link delay time(ms) bandwidth(Mbps)
0-1 1 30
0-2 ∼ 0-4 1 ∼ 50 10
1-5 ∼ 1-7 10 10
0-8,1-9 10 10

1) Normal Network Configuration: In the normal network,
only node2 ∼ 7 are used, and TCP is used for communication
between the left and right nodes. In this case, it can be seen
that congestion does not occur on Link0-1 due to the link
configuration. The delay time is set randomly from Link0-2
to Link0-4 to reproduce the physical distance of the network.
However, it does not account for the variability in latency
known as jitter. Other settings are shown below.

• Congestion control algorithm: NewReno [10]
• Queuing Algorithm : Droptail
• Queue size : 40 packets
• MTU : 1500byte
• Applications running on TCP : Bulk transfer

2) Congestion Network Configuration: In the congestion
network, all nodes from node2 ∼ 9 are used, and TCP is
used for communication between the left and right nodes. In
this case, Link0-1 becomes the bottleneck link due to the link
configuration, and congestion occurs at the router of node0.

3) Link Error Network Configuration: We reproduced a
failure in which packet loss occurs with a certain probability
on Link0-1 in Figure 6 of the Normal network. However,
packet loss occurs in two-way communication. The packet loss
rate was set to 0.001.

4) Data collected: The data subjected to analysis in this
preliminary experiment were RTT between intermediate node
and sender, Byte-in-Flight, the number of segments in the
duplicate acknowledgement.

The RTT estimation method is supplemented with Figure
7. We look at the Timestamp Value (TSval) of the ACK
segment sent by the receiving node and the segment with the
corresponding Timestamp Echo Reply (TSEcr). The difference
in the time taken for each segment to reach the intermediate
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node corresponds to the RTT. However, instead of using the
raw RTT values for analysis, smoothed values are used.

Sender Intermediate
node Receiver

TSval=20, TSecr=5

TSval=12, TSecr=20
TSval=12, TSecr=20
TSval=13, TSecr=20

RTT

ACK

TimeStamp = 5

TimeStamp = 12

TimeStamp = 6

TimeStamp = 13

data

TSval=5

data

Fig. 7: Estimation of RTT between intermediate and sending nodes

C. Analysis of RTT Time Series Data

We set the delay time of Link0-2 ∼ Link0-4 in Figure 6 to 1,
5, and 25 ms, respectively, and took measurements. The results
are shown in Figures 8. Representative RTT time series data
for each network situation are shown in Figures (a), (c) and (e),
and periodograms transformed by the Lomb-Scargle method
are shown in Figures (b), (d) and (f). In the periodograms, the
top three plots with the largest amplitudes are marked with red
dots. In all networks, the slow-start ends about 5 seconds after
the start, during which time a rapid increase and decrease in
RTT can be observed. The subsequent behavior is described
for each network.

1) Normal Network: As a whole, it repeats relatively clear
sawtooth waves. Figure (b) shows that the peaks stand out
clearly due to its periodicity.

2) Congestion Network: As a whole, it oscillates with
repeating small and large peaks. In Figure (d), it can be
seen that the oscillations have various frequency components
without large peaks.

3) Link Error Network: Figure (e) confirm that there is
no characteristic period and that there are large peaks in rare
cases. Figure (f) confirm that the amplitude of the frequency
component is large, as seen in the relatively clean sawtooth
wave.

D. Classification Performance with Selected Features

The following three features were collected in this prelim-
inary experiment.

• Frequency domain of RTT time series data: The fre-
quency component and amplitude of the point of max-
imum value in the frequency domain are used as the
feature values. In addition, the number of selected peaks
is added as the feature values in order of increasing
amplitude.

• Duplicate ACK (DUP): The number of segments with the
same acknowledgment number during the measurement
period is a feature.

• Byte-in-Flight (Byte): The maximum value of Byte-in-
Flight during the measurement period is taken as the
feature value.

(a) RTT (Normal) (b) Periodgram (Normal)

(c) RTT (Congestion) (d) Periodgram (Congestion)

(e) RTT (Link Error) (f) Periodgram (Link Error)

Fig. 8: RTT time series of TCP flow with server-side delay of 1 ms
and their periodograms

We then show how much each feature contributed to the
performance of the classification. A random forest was used
as the classifier. The settings were those described in Section
IV-B, and the comparisons were made based on accuracy.
Since we could not prepare a sufficient number of training
data, we trained 10 times, using 70% as training data and
30% as evaluation data, and evaluated the results based on the
average accuracy.

Table II shows the experimental results. The baseline is
the one in which only the frequency domain is selected as
a feature, and is compared with those to which other features
are added. The number of peaks taken from the frequency
space corresponds to the columns. From this result, it can be
considered that Byte-in-Flight and Duplicate ACK are not very
effective features.

In a decision tree-based ensemble classifier, feature impor-
tances can be calculated. Therefore, Table III shows the feature
importance of each when Byte-in-Flight, Duplicate ACK, and
frequency components up to the third peak are added to the
features. This shows that Byte-in-Flight does not contribute
much to classification in any of the conditions. It can also be
confirmed that both the amplitude and frequency of the first
peak have a high contribution to classification in all conditions.
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E. Evaluation by Confusion Matrix

From Section IV-D, it was confirmed that there was no
significant change in classification accuracy even when only
features in the frequency domain were used without adding
other features. Therefore, we evaluated the classifier using up
to the third peak in the frequency domain as the feature. To
simplify the table, the labels of Normal/Congestion/Link Error
are denoted as N/C/L.

The results are shown in Table IV. As a whole, there
were many cases of misclassification between Link Error and
Congestion. When the maximum server-side delay is 50 ms,
the cases of misclassification of Link Error and Congestion are
smaller than other cases, and when the maximum server-side
delay is 100 ms, the cases of misclassification of Normal and
LinkError are also more frequent.

TABLE II: Accuracy for each selected feature

Feature\#Peak 1 2 3
Baseline 0.818 0.859 0.925

+BiF 0.800 0.914 0.903
+DUP 0.837 0.859 0.851

+BiF and DUP 0.800 0.877 0.892

TABLE III: Feature Importance

Feature\#Peak 1 2 3
amplitude 1 0.399 0.311 0.27
frequency 1 0.365 0.231 0.226
amplitude 2 x 0.129 0.094
frequency 2 x 0.146 0.074
amplitude 3 x x 0.11
frequency 3 x x 0.067
DUP 0.216 0.149 0.138
BiF 0.02 0.033 0.02

Feature labels
amplitude i :
Amplitude
of the i-th peak
frequency i :
Frequency component
of the i-th peak
DUP : Duplicate ACK
BiF : Byte-in-Flight

TABLE IV: Confusion matrix based on server-side delay

Delay time 10ms 50ms 100ms
Correct \Prediction N C L N C L N C L

N 90 0 0 87 0 3 80 0 10
C 0 79 11 0 87 3 0 66 24
L 2 20 68 1 7 82 8 15 67

V. CONCLUSION

This study targets home and enterprise networks and exam-
ines a method for estimating the state of upstream networks by
monitoring multiple TCP flows at communication devices that
serve as traffic aggregation points connecting to the upstream
network.

The contributions of our proposed method are the following
three points. First, by passively measuring multiple TCP flows
and analyzing the information in their headers, we attempted
to identify the events that cause performance degradation
in the upstream network paths commonly traversed by the
flows. Second, focusing on the periodicity of TCP congestion
control, we performed spectral analysis using the Lomb-
Scargle method on time-series data obtained from headers, and
showed that using strong frequency components in frequency
space as features for machine learning may be effective in
classifying network states. Third, we proposed a method to

reproduce various network conditions using a simulator to
generate supervised datasets for real network classification.

While this paper focuses on the simplest of the factors to
be considered in Section III-B and only conducts preliminary
experiments, we are currently collecting real-world network
traffic and are investigating the differences in traffic charac-
teristics between real and virtual networks.
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