
CPCache: Cooperative Popularity based Caching for
Named Data Networks

Neminath Hubballi and Pankaj Chaudhary
Indian Institute of Technology Indore, India

{neminath, phd2001201004}@iiti.ac.in

Abstract—Information Centric Networks improve content de-
livery performance by caching popular content in the network
routers. However, estimating popularity comes with cost of every
router exchanging content requests with every other node which
leads to a significant overhead. In this paper, we describe
CPCache which brings cooperation among a group of routers
to estimate popularity and make caching decisions. It identifies
a set of designated routers in the network to coordinate the
popularity estimation and assist edge routers in making caching
decisions. In CPCache, every edge router associates itself with
a designated router from which it seeks assistance to (knowing
whether a new content is popular or not) make caching decisions.
We describe methods for selecting designated routers, edge
router association with a designated router, content popularity
estimation mechanism and also performing caching decisions
by routers. We evaluate and benchmark the performance of
CPCache with five other popular caching methods to conclude
it offers better performance compared to these methods using
simulations done with a popular discrete event simulator.

Keywords—Named Data Network, Content Popularity, Content
Caching, Cooperation, Designated Router.

I. INTRODUCTION

Existing Internet architecture is based on TCP/IP stack
and it relies on fetching contents from servers identified
by IP addresses. IP addresses locate the network devices.
However, with the emergence of multimedia content and
evolving user preferences, this architecture faces challenges
in meeting demand as it is not well aligned with a data-
centric delivery and suffers from inefficient delivery. To tackle
the challenges associated with content delivery and improve
the user experience with efficient delivery of content, a new
networking paradigm known as Content-Centric Networking
(CCN) [8] is being evaluated. A notable prototype of CCN is
Named Data Networking (NDN) [19]. NDN enables content
retrieval based on the content’s name, promoting a data-
driven approach instead of relying on IP addresses. In NDN,
information exchange between consumers and providers is
facilitated through Interest and Data packets [19]. Consumers
generate Interest packets to request specific content, and in
response, the content provider sends a Data packet containing
the requested content. Each router processes these packets
using three data structures: Content Store (CS) for storing
content, Pending Interest Table (PIT) for tracking Interest
packets, and Forwarding Information Base (FIB) for routing
requests to the next hop router.

NDN facilitates network-level content caching, enabling
routers to store consumer-requested content to meet future

demands. However, the router caches are limited by capacity
constraints. Thus a very limited content can be accommodated
in these caches and to maximize the utilization of stored
content, they store popular content. Popularity estimation
methods enable routers to prioritize frequently requested
content in their caches. Routers can estimate popularity
individually based on received requests or collaborate with
other routers for a collective estimation. However, limiting
content caching to only popular items in each router may
not be adequate [11], as some requested content, while not
highly popular, still contribute to reducing content access time
and reducing the load on the server. In order to address the
above issues, we introduce the CPCache, a demand-driven
cooperative popularity estimation approach. It focuses on
caching popular content at edge routers, which are within
1-hop distance of consumers, aiming to reduce the content
access latency. CPCache begins by identifying the most
appropriate designated nodes closer to the edge routers
based on the network’s size. These designated nodes are
responsible for tracking both local and global consumer
requests via coordination. CPCache optimizes computational
resources and reduces communication overhead by selectively
estimating popularity at designated nodes based on demand.
In specific, we make following key contributions this paper.
1. We propose CPCache strategy — a demand-driven
cooperative popularity estimation technique for caching
popular content at edge routers.
2. The CPCache strategy uses greedy techniques to determine
a set of designated nodes in the network. Further, it allows
each edge router to be associated with a designated node to
realize cooperative popularity estimation.
3. We assess the performance of the CPCache technique
using the Icarus [16] simulator with standard network
topologies. Our evaluation demonstrates improvements in
cache hit ratio and a reduction in content access time
compared to state-of-the-art approaches.

We organize the rest of this paper as follows. In Section II we
provide a brief overview of related in-network caching work.
In Section III we present the working of proposed CPCache
method. Following that, Section IV presents the simulation
results. Finally, Section V concludes the paper.

II. LITERATURE REVIEW

In order to better utilize the limited cache capacity of NDN
routers, different caching techniques [2], [5], [6], [7], [12] have
been proposed. These techniques are mainly of two types: On-

379979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

path and Off-path techniques, as detailed below.

(i) On-Path Caching: On-path caching is a straightfor-
ward technique that involves caching and retrieving content
from routers located along the content delivery (possibly
shortest) path. This method reduces coordination overhead but
it is ignorant of the content availability in neighboring (other
than on-path) routers. Following are some of the major caching
methods of this type.
Leave Copy Edge (LCEdge) [16]: Content is only cached at
an edge router which is directly connected to the consumer.
This method reduces content access time for cached content.
However, it reduces the cache hit ratio as it does not use the
available space in other routers.
Leave Copy Everywhere (LCE) [10]: Each router along the
content delivery path caches all content passing through it indi-
vidually. LCE reduces communication overhead but increases
content redundancy due to caching the same content at multiple
routers in the network, reducing diversity.
Prob(p) [9]: By caching content with a fixed probability value
p, this technique reduces content redundancy caused by the
LCE approach.
Leave Copy Down (LCD) [9]: Content is cached at a router
one hop down from the provider. LCD improves caching
performance by bringing content closer to the consumer with
each subsequent request.
ProbCache [12]: This strategy caches content in routers located
along the delivery path, considering the path’s cache capability
and cache weight.
DPCP [18]: DPCP considers the dynamic popularity of content
and facilitates coordination between on-path routers for content
caching.
Zheng et al. [20] proposed a dynamic popularity-based caching
technique to cache popular content at the most important node
along the content delivery path.

(ii) Off-Path Caching: In off-path techniques, con-
tent is cached and retrieved from any router in the network.
This can be achieved either by electing a centralized node [14]
or through predefined rules [4], [15] to explore the off-path
routers. While off-path techniques enhance the cache hit ratio
by utilizing content available in the neighborhood, they also
lead to an increase in communication overhead in the network
due to the coordination required.
Saino et al. [15] introduced a Hash-based routing technique
for retrieving and caching content at designated routers. In this
approach, edge routers calculate the hash value of the requested
content to locate the designated cache router. While this
technique reduces content redundancy and improves the cache
ratio, it may lead to increased content access time depending
on the distance between the consumer and the designated cache
router. The authors of [17] introduced a dynamic clustering
strategy for retrieving content from neighboring off-path or
on-path routers. Recent works in [4], [5], [13] have designed
cooperative caching techniques to leverage content from the
off-path neighborhood.

Both caching methods can take popularity into account for
their caching choices. We derive motivation from these works
and present CPCache, which is a cooperative demand driven
popularity based caching method. CPCache limits popularity
estimation only to a subset of nodes and reduces overhead.

III. CPCACHE DESIGN AND WORKING METHODOLOGY

In this section, we present the design overview of the
CPCache and provide a detailed explanation of its function-
ing.

I) Motivation: Caching frequently requested content closer to
consumers increases performance with reduced access latency
and reduces network traffic, as well as the load on the server.
Content popularity can be estimated either by having each
router maintain a local table to track content requests or,
alternatively, only edge routers can hold this information. In
both cases, routers do not consider the global request pattern
for caching decisions. On the other hand, estimating global
popularity requires sharing information related to popularity
periodically among routers, resulting in communication over-
head. To address this, we design a caching technique that
collaboratively assesses local and global content popularity
through a set of designated nodes. Our approach begins by
identifying designated nodes in the network that are respon-
sible for maintaining, estimating and coordinating the content
popularity. Each edge node identifies the nearest designated
node to update requests and also to make caching decisions.
This approach greatly reduces the data exchange by limiting
popularity exchange only to a set of designated nodes.

The working of CPCache involves many functionalities,
as elaborated below.

II) Selection of Designated Nodes: CPCache limits the pop-
ularity estimation and coordination only to designated routers.
An important consideration is the selection of these nodes.
We use a greedy technique for this purpose which selects
nodes with high degree centrality as candidates for designated
nodes. Algorithm 1 outlines the procedure for identifying the
designated nodes in the network topology G. It begins by
sorting the non-edge routers of G in descending order of their
degree centrality (higher degree centrality router first). From
this list S, it chooses the top N% of routers (routers with a
higher degree of centrality in S), relative to the total number
of nodes in the topology, as potential candidates for designated
nodes. The first router from set N, possessing the highest
degree centrality value, is marked as a designated node and
added to set DNodes (line 7). Subsequently, it selects that
node which is at least K hops away (lines 8 to 16) from
the existing set of designated nodes. This ensures that these
nodes are well spread and not closer to the existing set of
designated nodes. We select the parameter K by dividing the
diameter d of the topology (representing the maximum distance
between any pair of nodes in the network) with the size of set
N (number of such nodes required). At each step, the newly
selected designated node is added to the set DNodes.

For instance, consider the reference topology shown in Fig. 1,
assuming K to be 2, and we have a set N containing
{R2, R3, R7}, the process unfolds as follows: R2 is initially
added to the DNodes set due to its higher degree centrality
value. Next, R3 is evaluated, but as it is not at a distance of 2
from R2, it isn’t selected as a designated node. Subsequently,
we have R7, which is at 2 hops distance from the previously
designated R2, making it eligible to be added to the DNodes
set. As a result, the final DNodes set consists of {R2, R7}.

380

Consumer 1

Consumer 2

Source

Designated Node

Interest/Request

Content/Data

Popularity Table
Request Name Request Count

Name1 5
Name2 2

Consumer 3

R1 R2 R3

R7

R4

R9 R10 R11

R5 R6 R8

Edge

Edge

Edge

Fig. 1: CPCache Reference Architecture

Algorithm 1: Selection of Designated Nodes
Input: G(V, E)← Network Topology
Output: DNodes ← Set of Designated Nodes

1 Initialize: DNodes ← {}
2 Z← FindNonEdgeRouters(G)
3 S← SortRoutersByDegreeCentrality(Z)
4 d← FindDiameterOf(G)
5 N← GetTopNodes(S) // Select top N% nodes
6 K ← d

N // Distance between designated nodes
7 DNodes ← DNodes ∪ N1
8 for N2 to Nn in N do
9 for X in DNodes do

10 Dst← ShortestPath(X, N)
11 if Dst ≤ K then
12 Go to 8; Continue with next node in N
13 end
14 end
15 DNodes ← DNodes ∪{N}
16 end

III) Associating Edge Router with a Designated Node: Once
the designated nodes are identified, each edge router is required
to establish an association with one of the nearest designated
nodes to facilitate the sharing of popularity information and
making caching decisions. Each edge router R selects its
designated node X from the set DNodes which is closer to
it (either number of hops or latency, etc). In this work, we
use a shortest path algorithm to choose one as detailed in
Algorithm 2.

IV) Popularity Estimation: CPCache also uses popularity to
guide caching decisions of edge routers and also to coordinated
popularity estimation as mentioned earlier. The popularity
of a content is determined by the frequency of consumer
requests for that particular content within the network. The
more frequently an item is requested, the more popular it
is considered. We maintain a Popularity Table (PT) to keep
track of the request frequencies, which are managed by the
designated nodes in the network. These designated nodes
collaborate with other designated nodes within the network
to estimate the global popularity of content by sharing their
local information. When an edge router receives a request for

Algorithm 2: Discovering Designated Node for Edge
Router R

1: R ← Edge Router
2: DNodes ← Set of Designated Nodes
3: X ← Designated Node for R
4: MnDst←∞
5: for each X ∈ DNodes do
6: Dst← ShortestPath(R, X)
7: if Dst < MnDst then
8: MnDst← Dst
9: Pair X and R // Designate X for R

10: end if
11: end for

a particular content, it forwards this request to the designated
node responsible for updating the popularity table. If an entry
for the content already exists in the PT, the request count is
incremented. Otherwise, the designated node creates a new
entry for the request. Our CPCache strategy employs a
demand-driven popularity estimation method, which calculates
popularity for the requested content, in contrast to the methods
that periodically estimate popularity. This approach is more
resource-efficient as it focuses computational efforts on ac-
tively considered caching content. Algorithm 3 details how
each designated node keeps track of request frequencies. The
designated node uses Equation 1 to assess the popularity level
of each consumer-requested content. It uses the predefined
threshold θ to determine whether a specific requested item
from the edge router is considered popular or not. If the
estimated popularity reaches the threshold θ, the content is
deemed popular and eligible for caching. The global popularity
is estimated as weighted sum of local and global popularity as
in Equation 1.

Algorithm 3: Updating the Local Popularity of Con-
tent

1: PT ← {} // Initialize Popularity Table
2: I ← Index to update request count
3: R ← Edge Router
4: X ← Designated Node for R
5: Name ← Content Request at R
6: Send Request to X // To Update Popularity Table
7: if Name ∈ PTOf(X) then
8: Nme + + // Update Count for Name
9: else

10: Nme = 1 // Create Entry for Name in PT
11: end if

PNme = (1 − ω) × PL(Nme) + ω × PG(Nme) (1)

In Equation 1, PNme represents the overall popularity of con-
tent Name, which is influenced by its demand in both local (all
edge routers associated with that designated router) and global
regions. PL(Nme) is the local popularity, PG(Nme) is
the global popularity of content Name, and ω ∈ [0,1] is the
weight parameter set to 0.125 to prioritize local popularity over
global popularity, which can help to enhance content retrieval
times by ensuring that highly popular content in specific

381

regions is readily accessible to consumers in those areas. For
example, let’s consider the reference topology depicted in
Fig. 1. In this topology, R2 and R7 are designated nodes and
are responsible for maintaining the popularity table. Hence,
these nodes record the popularity of content received at edge
routers. When R1 receives a request for content Name, it
forwards the requested content to its designated node, R2, to
update the popularity information.

V) Content Caching by a Router: Caching decisions are
made when a content provider responds with a Data packet
corresponding to the request. In this process, each intermediate
router between the content provider and the consumer decides
which content to store in the CS (cache) and which to evict.
The CPCache strategy facilitates cooperative caching at the
consumer edge router through consultation with its designated
node. When router R receives a Data packet and has sufficient
space in CS, it always caches the content. This approach aims
to maximize cache utilization and promote a faster converging
hitting rate. When the cache capacity of the router R is full,
the caching decisions made by it are differ depending on
whether R is an edge router or an intermediate router. If
R is not an edge router, it will simply evict content from
its CS using the Least Recently Used (LRU) policy and
cache the newly arrived content. On the other hand, if R
is an edge router, then the caching decision is influenced by
the popularity of the newly arrived content. Edge router R
consults its respective designated node to obtain the popularity
information of the new content. If the popularity of the new
content surpasses a predefined threshold, it caches it in its CS
by replacing the least recently accessed content using LRU.
Otherwise, it ignores the new arrival. Placing highly popular
content at consumer edge routers helps reduce content retrieval
times. Algorithm 4 outlines the details of the content caching
process. In the reference topology shown in Fig 1, if content
Name1 arrives at full-capacity edge router R1, R1 collaborates
with its designated node R2 to decide whether to cache the
content based on its popularity; if it is considered popular,
cache it; otherwise, ignore it.

Algorithm 4: Caching Content at a Router R
1: Name ← New Content at R
2: Size ← SizeOf(Name)
3: C ← CapacityOf(R)
4: O ← OccupancyOf(R)
5: if Name /∈ CacheOf(R) then
6: if C − O ≥ Sze then
7: Cache Name at R //Maximize Cache Utilization
8: else if R is an Edge Router then
9: Cache Name at R if PNme ≥ θ // Keeps Popular

Content
10: else
11: Cache Name at R //Use LRU Policy
12: end if
13: end if

IV. EXPERIMENTS AND EVALUATION

This section begins with an overview of the simulation
setup. Following that, we introduce the evaluation metrics

and network topologies used for comparing the performance
of the proposed CPCache against LCEdge [16], LCE [10],
Prob(p=0.5) [9], ProbCache [12], and DPCP [18]. Subse-
quently, we present the simulation results.

I. Simulation Setup: We utilize the Icarus [16] simulator, a
commonly used tool for evaluating caching techniques within
the ICN/NDN framework, to assess the performance of our
proposed CPCache caching method. Icarus is developed in
Python and easily adaptable to various ICN architectures,
offering a wide range of experimental configurations and
standard network topologies, providing an extensive platform
for evaluating caching methods. In Icarus, the simulation
workload is modeled by Poisson and Zipf [3] distributions,
which capture the arrival of consumer requests and adjust the
different levels of content popularity. In our simulations, we
utilize these distribution functions to generate 105 requests
from a content universe containing 104 distinct items, all
of which are located at a single content source. We set the
content arrival rate λ to 10 requests per second, which means,
on average, ten requests come in every second, and the Zipf
popularity parameter α to 0.7 and 0.8 to replicate varying
degrees of content popularity. We assume that all routers in
the network topologies are capable of caching content, with
each router having a uniform capacity ranging from 0.1% to
0.5%, and all content items are of equal size. This capacity,
in comparison to the size of the content universe, is relatively
small. In our simulations, all caching techniques employ the
best-path strategy to route packets toward the content provider,
and each strategy utilizes the LRU policy to remove content
when a router’s capacity is reached. The link latency between
each pair of connected nodes is set at 5 milliseconds. For the
CPCache strategy, the default popularity threshold θ value
is fixed at 50, and the value of N is set to 5% of the total
nodes in the topology for identifying the designated nodes.
The simulations are run five times, and the average results
from these runs are used to generate the graphs showing the
performance. The details of the simulation parameters used for
the experiments are presented in Table I.

TABLE I: Simulation Settings

Parameters Value

Network topology GEANT and TREE

Content universe (catalog) size 104 objects

Number of requests 105 objects

Number of warm-up requests 103 objects

Content request arrival rate Poisson distribution, λ = 10 requests per second

Content popularity model Zipf, α ∈ [0.7,0.8]

Routers cache capacity [0.1 to 0.5]% of content catalog

Replacement Strategy LRU

Experiment repetitions 5

II. Evaluation Metrics: We used two standard evaluation
metrics, namely cache hit ratio and content access time, to
assess the effectiveness of our proposed technique.

1. Cache Hit Ratio: This metric reflects the proportion of
content served directly from the routers’ caches. A higher ratio
indicates a lighter load on the content server.

2. Content Access Time: This metric measures the collective

382

time taken for all consumer requests to reach the content
provider and for the corresponding content to travel back to
the consumers.

III. Network Topology: We conducted simulations using two
standard network topologies with distinct sizes and struc-
tures: GEANT [1] and TREE. GEANT is a high-speed data
communications network connecting research and education
institutions across Europe. It comprises 40 routers, with 8 of
them designated as one-degree routers, acting as edge routers.
We assigned artificial consumers to each of these edge routers,
and one artificial source node is attached to the router with
the highest degree. On the other hand, TREE is an artificial
hierarchical network topology available in the Icarus. In this
topology, the root node functions as the content source, the
intermediate nodes serve as routers responsible for content
caching, and the leaf nodes are marked as consumers. The
TREE topology is configured with a level value of 6 and a
branching factor of 2, resulting in a total of 63 nodes. Table II
has more details about these topologies.

TABLE II: Topology Information

Topology Node Link Consumer Source Router Diameter
GEANT 49 70 8 1 40 10
TREE 63 62 32 1 30 10

IV. Simulation Results: Here, we present the simulation re-
sults for all six caching techniques conducted on two different
network topologies.

i) Determining the Appropriate Popularity Threshold: In
this section, we first explore the determination of the suitable
popularity threshold value θ through evaluations. This thresh-
old helps determine what content is considered popular within
a specific region. Fig. 2 demonstrates the effects on cache hit
ratio and content access time while varying the threshold value,
with a fixed cache size of 0.3% and a Zipf α = 0.8. The results
illustrated in Fig. 2 show that setting the θ at 50 yields the
most favorable outcomes in terms of both cache hit ratio and
content access time. Consequently, we set the default value of
θ to 50 for all subsequent experiments.

GEANT TREE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
a
c
h
e

H
i
t

R
a
t
i
o

 = 1

 = 5

 = 10

 = 50

 = 100

(a) Cache Hit Ratio

GEANT TREE

0

10

20

30

40

50

60

70

C
o
n
t
e
n
t

A
c
c
e
s
s

T
i
m
e

(
m
s
)

 = 1

 = 5

 = 10

 = 50

 = 100

(b) Content Access Time

Fig. 2: Estimation of Optimal Popularity Threshold (θ) for
Various Network Topologies with Fixed Parameters (Cache
Size = 0.3%, Zipf α = 0.8).

ii) Evaluating the Influence of Cache Size and Zipf α:
Here, we present the simulation outcomes for all six caching
techniques. We evaluate the performance of CPCache by ex-
amining cache hit ratios and content access times on GEANT

and TREE network topologies under different router cache
sizes, ranging from 0.1% to 0.5%, and adjusting the Zipf
popularity α to 0.7 and 0.8.

Fig. 3 illustrates the cache hit ratios for GEANT and TREE
topologies with Zipf α set at 0.7. As shown in Fig. 3, an
increase in router cache capacity results in higher cache hit
ratios for all the techniques, indicating that a greater propor-
tion of consumer requests are being satisfied by the router’s
cache. Notably, regardless of the cache size, our proposed
CPCache strategies consistently outperform the other five
caching techniques on both topologies. On GEANT topology,
the CPCache achieves up to a 75% higher cache hit ratio
than DPCP (second best strategy) for smaller cache sizes (i.e.,
0.1%) and up to 26.05% for larger cache sizes (i.e., 0.5%).
Similarly, on TREE topology, the CPCache achieves up to
a 73.6% higher cache hit ratio than DPCP for smaller cache
sizes (i.e., 0.1%) and up to 12.1% for larger cache sizes (i.e.,
0.5%).

0.1 0.2 0.3 0.4 0.5

Cache Size (% of catalog size)

0.00

0.05

0.10

0.15

0.20

0.25

C
a
c
h
e

H
i
t

R
a
t
i
o

LCEdge

LCE

Prob(p=0.5)

ProbCache

DPCP

CPCache

(a) GEANT

0.1 0.2 0.3 0.4 0.5

Cache Size (% of catalog size)

0.00

0.05

0.10

0.15

0.20

0.25

C
a
c
h
e

H
i
t

R
a
t
i
o

LCEdge

LCE

Prob(p=0.5)

ProbCache

DPCP

CPCache

(b) TREE

Fig. 3: Cache Hit Ratio for Different Cache Sizes on Different
Network Topologies (Zipf α= 0.7).

Fig. 4 presents the cache hit ratio for both GEANT and
TREE topologies with a Zipf α value of 0.8. Increasing
the α parameter results in improved cache hit ratios for all
six caching methods. Figs. 4a and 4b demonstrate that the
CPCache consistently outperforms other caching techniques,
regardless of cache size and Zipf alpha parameter. For GEANT
topology, the cache hit ratio of the CPCache surpasses DPCP
by up to 35.8% with a cache size of 0.1% and up to 13.2%
with a cache size of 0.5%. On TREE topology, the cache hit
ratio of the CPCache outperforms DPCP by up to 51.9% with
a cache size of 0.1% and up to 7.25% with a cache size of
0.5%.

0.1 0.2 0.3 0.4 0.5

Cache Size (% of catalog size)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
a
c
h
e

H
i
t

R
a
t
i
o

LCEdge

LCE

Prob(p=0.5)

ProbCache

DPCP

CPCache

(a) GEANT

0.1 0.2 0.3 0.4 0.5

Cache Size (% of catalog size)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
a
c
h
e

H
i
t

R
a
t
i
o

LCEdge

LCE

Prob(p=0.5)

ProbCache

DPCP

CPCache

(b) TREE

Fig. 4: Cache Hit Ratio for Different Cache Sizes on Different
Network Topologies (Zipf α= 0.8).

383

Fig. 5 presents the content access time for GEANT and
TREE topologies with a Zipf α value of 0.7. It is evident
that, as router capacity increases, the content access time
for all techniques decreases, indicating that most consumer
requests are served by the cache of the nearest router. On
both topologies, our proposed CPCache outperformed the
other five caching techniques regardless of cache size. On the
GEANT topology, the CPCache exhibits content access times
up to 3.4% lower than DPCP. Similarly, on TREE topology, it
is up to 2.96% lower than DPCP.

0.1 0.2 0.3 0.4 0.5

Cache Size (% of catalog size)

45

50

55

60

C
o
n
t
e
n
t

A
c
c
e
s
s

T
i
m
e

(
m
s
)

LCEdge

LCE

Prob(p=0.5)

ProbCache

DPCP

CPCache

(a) GEANT

0.1 0.2 0.3 0.4 0.5

Cache Size (% of catalog size)

45

47

49

51

53

C
o
n
t
e
n
t

A
c
c
e
s
s

T
i
m

e

(
m

s
)

LCEdge

LCE

Prob(p=0.5)

ProbCache

DPCP

CPCache

(b) TREE

Fig. 5: Content Access Time (in milliseconds) for Different
Cache Sizes on Different Network Topologies (Zipf α= 0.7).

0.1 0.2 0.3 0.4 0.5

Cache Size (% of catalog size)

40

45

50

55

60

C
o
n
t
e
n
t

A
c
c
e
s
s

T
i
m
e

(
m
s
)

LCEdge

LCE

Prob(p=0.5)

ProbCache

DPCP

CPCache

(a) GEANT

0.1 0.2 0.3 0.4 0.5

Cache Size (% of catalog size)

40

45

50

55

C
o
n
t
e
n
t

A
c
c
e
s
s

T
i
m
e

(
m
s
)

LCEdge

LCE

Prob(p=0.5)

ProbCache

DPCP

CPCache

(b) TREE

Fig. 6: Content Access Time (in milliseconds) for Different
Cache Sizes on Different Network Topologies (Zipf α= 0.8).

Fig. 6 illustrates the content access time for GEANT and
TREE topologies with a Zipf α value of 0.8. As the Zipf
α parameter increases, a notable reduction in content access
time is observed across all six caching strategies. Figs. 6a
and 6b demonstrate the consistent superiority of the CPCache
strategy over other caching methods, regardless of cache size
and α parameter. On GEANT topology, CPCache achieves a
content access time up to 4.58% lower than DPCP. Similarly,
on TREE topology, CPCache outperforms DPCP by up to
4.1% in terms of content access time.

V. CONCLUSION

In this paper, we presented CPCache a cooperative pop-
ularity estimation technique that caches popular content at
edge routers through coordination with designated nodes. The
performance of CPCache is assessed using the Icarus, a
Python-based discrete event simulator on two distinct net-
work topologies. We compared our proposed CPCache tech-
nique with five state-of-the-art in-network caching methods
(LCEdge, LCE, Prob(p), ProbCache, and DPCP) using two

performance metrics: cache hit ratio and content access time.
The simulations were carried out by changing the cache size
and the Zipf α parameter. The results of the simulations indi-
cate that CPCache reduces content delivery time and increases
the cache hit ratio compared to other caching techniques on
both topologies. We intend to extend our CPCache approach
to enable centralized caching decisions through designated
nodes and also evaluate the performance with other parameters
like cache diversity.

REFERENCES

[1] GEANT. Online. Available: https://geant3plus.archive.geant.net/Pages/
home.html. Accessed: 2023-10-28.

[2] S. Alduayji, A. Belghith, A. Gazdar, and S. Al-Ahmadi. Pf-edgecache:
Popularity and freshness aware edge caching scheme for ndn/iot net-
works. Pervasive and Mobile Computing, 91:101782, 2023.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and zipf-like distributions: Evidence and implications. In Proc. IEEE
INFOCOM’99, volume 1, pages 126–134, 1999.

[4] P. Chaudhary, N. Hubballi, and S. G. Kulkarni. Ncache: neighborhood
cooperative caching in named data networking. In 2022 5th Interna-
tional Conference on Hot Information-Centric Networking (HotICN),
pages 36–41, 2022.

[5] P. Chaudhary, N. Hubballi, and S. G. Kulkarni. encache: Improving
content delivery with cooperative caching in named data networking.
Computer Networks, 237:110104, 2023.

[6] J. Hou, H. Xia, H. Lu, and A. Nayak. A gnn-based approach to optimize
cache hit ratio in ndn networks. In Proc. IEEE Global Commun. Conf.
(GLOBECOM), pages 1–6, 2021.

[7] N. Hubballi, P. Chaudhary, and S. G. Kulkarni. Pepc: Popularity
based early predictive caching in named data networks. In Proc.
IEEE Consumer Communications & Networking Conference, pages 1–
6, 2024.

[8] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Networking named content. In Proc. ACM
CoNEXT, pages 1–12, 2009.

[9] N. Laoutaris, H. Che, and I. Stavrakakis. The lcd interconnection of lru
caches and its analysis. Performance Evaluation, 63(7):609–634, 2006.

[10] N. Laoutaris, S. Syntila, and I. Stavrakakis. Meta algorithms for
hierarchical web caches. In Proc. IEEE Int. Conf. Perform. Comput.
Commun. (IPCCC), pages 445–452, 2004.

[11] M. D. Ong, M. Chen, T. Taleb, X. Wang, and V. C. Leung. Fgpc: Fine-
grained popularity-based caching design for content centric networking.
In Proc. 17th ACM Int. Conf. Model. Anal. Simulat. Wireless Mobile
Syst., pages 295–302, 2014.

[12] I. Psaras, W. K. Chai, and G. Pavlou. Probabilistic in-network caching
for information-centric networks. In Proc. 2nd Ed. ICN Workshop Inf.-
Centric Netw. (ICN), pages 55–60, 2012.

[13] A. Reshadinezhad, M. R. Khayyambashi, and N. Movahedinia. An
efficient adaptive cache management scheme for named data networks.
Future Generation Computer Systems, 148:79–92, 2023.

[14] J. Rihab and L. C. Fourati. Ccnflow: Content-centric networking
managed by openflow controller. In Proc. ComNet, 2018, pages 1–5,
2018.

[15] L. Saino, I. Psaras, and G. Pavlou. Hash-routing schemes for infor-
mation centric networking. In Proc. ACM SIGCOMM ICN Workshop,
pages 27–32, 2013.

[16] L. Saino, I. Psaras, and G. Pavlou. Icarus: a caching simulator for
information centric networking (icn). In Proc. 7th Int. Conf. Simul.
Tools Techn., pages 66–75, 2014.

[17] M. Yoshida, Y. Ito, Y. Sato, and H. Koga. Performance evaluation of
popularity-aware dynamic clustering scheme for distributed caching in
icn. In APSIPA ASC, pages 185–190, 2022.

[18] M. Yu and R. Li. Dynamic popularity-based caching permission strategy
for named data networking. In Proc. 22nd CSCWD’18, pages 576–581,
2018.

[19] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang. Named data network-
ing. ACM SIGCOMM Computer Communication Review, 44(3):66–73,
2014.

[20] Q. Zheng, Y. Kan, J. Chen, S. Wang, and H. Tian. A cache replication
strategy based on betweenness and edge popularity in named data
networking. In Proc. IEEE ICC, pages 1–7, 2019.

384

