

BalanceNet Orchestrator: A KQV-based Dynamic
Task Allocation for Distributed Deep Learning

Teh-Jen Sun
Department of Artificial Intelligence

Kyung Hee University
Yongin-si, South Korea
dlwmznzl1@khu.ac.kr

Thien-Thu Ngo
Department of Computer Science and

Engineering
Kyung Hee University

Yongin-si, South Korea
thu.ngo@khu.ac.kr

Eui-Nam Huh
Department of Computer Science and

Engineering
Kyung Hee University

Yongin-si, South Korea
johnhuh@khu.ac.kr

Abstract—In Artificial Intelligence(AI), training expansive
models with billions of parameters necessitates substantial
computational resources. This requirement has led to the
adoption of parallel computing frameworks. However, these
frameworks often confront node performance imbalances due
to disparities in computational capabilities and network
conditions. To address this issue, we introduce the BalanceNet
Orchestrator(BNO), a dynamic task allocation algorithm
designed to equilibrate workloads in parallel training
environments. BalanceNet Orchestrator assesses and adjusts to
node-specific performance in real time, facilitating optimal
workload distribution and resource utilization. This method
significantly enhances training efficiency and accelerates model
convergence, presenting an efficient approach for training
large-scale AI models within parallel training architecture.

Keywords—AI, Parallel training, Distributed, heterogeneous
environment

I. INTRODUCTION
The evolution of Artificial Intelligence(AI) has precipitated

significant advancements across various fields, notably in the
development and deployment of large-scale models for tasks
such as language processing, image recognition, and complex
data analysis[1][2]. The burgeoning size and complexity of
these models necessitate augmented computational resources,
highlighting the limitations of traditional single-node
computing systems in terms of efficiency and scalability.

The growing complexity of AI models has led to the
adoption of parallel processing techniques within the research
community[3]. These techniques aim to decrease the training
time of large-scale models by distributing computational tasks
across multiple nodes. However, the effectiveness of parallel
processing is often hampered by inconsistent computational
power, memory, and network capabilities across the
nodes[4][5], leading to inefficiencies in workload distribution
and synchronization.

To address these challenges, this study introduces the
BalanceNet Orchestrator, a novel architecture incorporating
the Key-Query-Value(KQV) structure. BalanceNet
Orchestrator is engineered to optimize task allocation within
parallel processing systems, effectively managing the
diversity of node capabilities and promoting more efficient
resource allocation and utilization. By dynamically adjusting
to real time performance metrics and leveraging the KQV
structure, BalanceNet Orchestrator ensures a tailored task
distribution to meet the specific needs of each node,
significantly enhancing the overall efficiency of parallel
learning. Figure 1 provides an overview of the BalanceNet
Orchestrator architecture, demonstrating its utility in varied

computational environments. This architecture not only
analyzes each node's computational power, memory capacity,
network bandwidth, and latency in real time, but it also
addresses the complexity of interactions between nodes. This
comprehensive approach includes tackling challenges such as
minimizing the impact of external variables like network
latency and alleviating bottlenecks in the learning process,
ultimately aiming to enhance the scalability and efficiency of
large-scale AI model training.

Fig. 1. BalanceNet Orchestrator Overview

II. RELATED WORK
2.1 Parallel Training in Distributed Environments

Parallel training in distributed environments is crucial for
training large-scale AI models efficiently. This section covers
several parallel processing strategies: data parallelism,
distributing data across multiple processors; model
parallelism, splitting the model across processors; and
pipeline parallelism, dividing the model training into
stages[6][7]. Recent studies have focused on combining these
strategies to accelerate the training of extensive models[8][9].
Parallel training architectures usually employ Peer-to-
Peer(P2P) or master-worker node structures. P2P structures
facilitate direct task distribution but increase communication
overhead with more nodes. Conversely, master-worker
structures, though complex, are more effective for large-scale
systems by reducing communication costs[10].

Developing advanced algorithms and techniques to address
challenges like load balancing, data synchronization, and
resource allocation is essential for optimizing parallel training.
These developments are vital for the swift and accurate

385979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

training of large-scale AI models[11], continuously evolving
and shaping the future of AI model training.

2.2 Task Allocation and Load Balancing Strategies

Efficient task allocation and load balancing are
fundamental in distributed systems for optimal system
performance. This section focuses on algorithms and
methodologies that dynamically distribute and adjust tasks
based on the variable performance capabilities of individual
nodes. These strategies are essential for addressing
performance imbalances, enhancing system
efficiency[12][13]. Research in space-search dynamic
scheduling techniques is noteworthy, aiming to refine the
efficiency of operations across nodes[14].

Building upon the task allocation and load balancing
strategies discussed, the development of interfaces for
asynchronous communication takes on a significant role[15].
These advanced interfaces are crucial in distributed AI models
for scalable and efficient training, facilitating smoother data
transfer and synchronization across nodes, a key aspect in
parallel computing. Such advancements in communication
protocols are instrumental in reducing latency and enhancing
throughput, thereby contributing to more effective and rapid
model training processes[16].

2.3 Heterogeneous Computing and Resource Optimization

The increasing complexity of AI models necessitates
advanced resource optimization in heterogeneous computing
environments. This section covers efficient resource
management and allocation in systems with diverse node
capabilities, focusing on adapting resource usage to workload
demands and maximizing underutilized resources like idle
CPU and bandwidth in GPU clusters[17]-[19]. The rise of
heterogeneous GPU clusters and cloud-based Machine
Learning as a Service(MLaaS) solutions is also examined,
showcasing their role in enhancing distributed learning tasks
and addressing resource allocation challenges[20][21]. These
developments indicate a trend towards more adaptive, resilient,
and scalable AI infrastructures, improving computational
efficiency and model accuracy in AI development[22].

III. THE PROPOSED SYSTEMS
3.1. Main Framework

In this study, the ‘BalanceNet Orchestrator’ architecture
proposes dynamic task allocation mechanisms, addressing
node performance imbalances within heterogeneous
distributed computing environments. This section elaborates
on the conceptual structure and theoretical underpinnings of
the architecture, exploring strategic approaches to enhance
distributed learning efficiency and reduce training times.

The ‘BalanceNet Orchestrator’ architecture
comprehensively evaluates each node's computational power,
memory capacity, network bandwidth, and latency in real time,
while simultaneously addressing the intricacies of node
interactions. Its sophisticated approach dynamically aligns
workloads with the capabilities of individual nodes and the
complex dynamics of the network, striving to optimize overall
system efficiency. Key to this strategy is addressing
challenges like mitigating the impact of external factors such
as network latency and easing bottlenecks that hinder the
learning process.

Figure 2 provides a detailed visual representation of the
'BalanceNet Orchestrator' architecture. It illustrates the
sophisticated design and operational functionality,
showcasing how the architecture optimizes node performance
and efficiently distributes tasks. This depiction clarifies the
BalanceNet Orchestrator’s component in enhancing parallel
training efficiency within distributed environments.

Figure 2 Workflow Description:

(1) Multiple learning nodes initiate the ‘BalanceNet
Orchestrator’ architecture, forming a P2P structure for
mapping performance metrics and IDs. These metrics are
stored as ‘Key’, essential for determining each node's
workload capabilities.

(2) The system dynamically calculates metrics for each node,
essential for ongoing parallel processing. This phase operates
continuously on individual threads, adapting to real time
performance changes.

(3) Nodes are organized based on performance, involving
steps like model initialization, task sequencing, and weight
initialization. This process concludes with Batch Size

Fig. 2. BalanceNet Orchestrator Architecture

386

Determination for each node, aligning with the ‘Query’
component of the KQV model, which dictates task assignment
based on node capabilities.

(4) Finally, the system concludes with dataset loading, leading
to the commencement of parallel training. This step represents
the dynamic allocation of nodes, corresponding to the ‘Value’
in the KQV model, ensuring optimal task distribution based
on node performance and task requirements.

This detailed workflow explanation underscores the
intricate design and the significance of each component within
the 'BalanceNet Orchestrator' architecture. Figure 2 adeptly
demonstrates how each phase interconnects to enhance the
overall system's performance, playing a crucial role in the
effective management of nodes and optimization of task
allocation within complex distributed learning environments.
Such a systematic approach significantly boosts the efficiency
of distributed learning systems, paving the way for more
sophisticated and efficient approaches in AI model training
methodologies.

3.2 KQV-Based Mathematical Architecture of the
‘BalanceNet Orchestrator’ Algorithm

In this study, we introduce a KQV-based ‘BalanceNet
Orchestrator’ Algorithm that incorporates a mathematical
Architecture to address the issue of performance imbalance
among nodes within parallel training environments. The
adoption of the KQV structure is rooted in its ability to
effectively handle the dynamic and complex nature of
distributed learning systems. By breaking down the
performance assessment into three distinct but interrelated
components—Key, Query, and Value—the algorithm can
precisely evaluate and address the unique needs of each node.

This algorithm dynamically assigns workload to each node
by continuously monitoring computational capabilities,
memory usage(), and network latency(), optimizing
task distribution in real time. It quantifies three primary
performance indicators—Key, Query, and Value—which
collectively determine the optimal batch size to be allocated
to each node. This approach enables a more nuanced and
adaptive task distribution, significantly enhancing the
efficiency and scalability of parallel training processes.
Specifically, the Key metric assesses the computational
capability, the Query addresses the current demand or
requirement of the node, and the Value represents the node
itself, allowing for a tailored workload distribution that
optimally utilizes each node's resources.

The performance indicators  , memory weight  ,
network communication weight , and network latency  for node i are defined as follows:

 = ∑   (1)

 represents the computational capacity of node  relative
to the total computational capacity of all nodes in the network.
This metric is critical for assessing each node's capability to
handle computational tasks in the distributed system.

 = 1 − ∑    (2)

 evaluates the memory availability of node  in
relation to the overall memory usage across all nodes. This
indicator helps to determine how much memory each node
can utilize without overburdening the system

L = response − request (3)

 measures the overall network latency, calculated as the
difference between the response time and request time in the
network communication. This metric is crucial for
determining the efficiency of data transfer and
synchronization across the distributed system.

 = 1 − 


  
 (4)

 specifically denotes the network communication
time between nodes  and  , capturing the latency in data
transfer specific to that node pair. This metric is essential for
optimizing node-to-node communication within the
distributed network.

With these definitions in,  represents the operations
per second for node  ,  denotes the memory usage,
indicating the amount of memory utilized by the node, and,  is the network communication time between nodes  and  , reflecting the latency in data transfer between nodes. 
signifies the total number of nodes.

The batch size  to be allocated to node  is calculated by
considering the performance indicators and workload
requirements as follows:

 =   +  + ∑   3 ×  , 1 (5)

In Equation (5),  signifies the baseline batch size,
establishing a standard for the initial task allocation among
nodes. The floor function ⌊⋅⌋ rounds the computed value down
to the nearest smaller integer, ensuring that the batch size
remains an integer. The max function guarantees that the batch
size for each node is never less than 1, ensuring every node
receives at least a minimum workload. Here,  represents the
relative computational capacity of node , and  reflects
its available memory. The sum ∑    denotes the
collective network communication weight for node  in
relation to all other nodes, incorporating network latency into
the task allocation process.

This formula dynamically adjusts the batch size for each
node, considering the computational power(K), memory
usage(MU), and Network Communication Weight(NCW). By
doing so, it enhances the overall efficiency of distributed
learning and reduces training time. This mathematical
approach allows the 'BalanceNet Orchestrator' Algorithm to
effectively address the complexities inherent in distributed
environments, leading to a more efficient and balanced
workload distribution across the network.

3.3 Operational Implementation of the ‘BalanceNet
Orchestrator’ Algorithm for Parallel training

In this section, we discuss the implementation of the
‘BalanceNet Orchestrator’ algorithm, designed to address
performance imbalances among computational nodes in

387

parallel training operations. This algorithm dynamically
calibrates the allocation of batch sizes based on a real time
analysis of each node's computational throughput, memory
allocation, and network communication latency. The master
node acts as a central aggregator of performance metrics,
using this information to recalibrate workload distribution
across the network, thus optimizing the overall throughput of
the parallel training paradigm.

The algorithm operates as outlined below:

Algorithm 1 ‘BalanceNet Orchestrator’ for Parallel training
1 Procedure DYNAMIC_KQV_TASK_ALLOCATION(rank, world_size, stop_event,

update_interval)
2 while NOT stop_event.IS_SET() do
3 OPS[rank], MU[rank], NL[rank] = COLLECT_CURRENT_METRICS(rank)
4 if rank IS FIRST_NODE then
5 AGGREGATE_ALL_METRICS(OPS, MU, NL, world_size)
6 K = [OPS[i] / SUM(OPS) for i in range(world_size)]
7 MW = [1 - MU[i] / SUM(MU) for i in range(world_size)]

8 NCW = [1 - NL[i] / MAX(NL) for i in range(world_size)]

9 for node_id in range(world_size) do

10 BS = MAX(FLOOR((K[node_id] + MW[node_id] + NCW[node_id])
/ 3 * BASE_BATCH_SIZE), 1)

11 UPDATE_NODE_BATCH_SIZE(node_id, BS)
12 end for
13 DISTRIBUTE_BATCH_SIZES(world_size)
14 else
15 SEND_METRICS_TO_FIRST_NODE(OPS[rank], MU[rank], NL[rank],

rank)
16 end while
17 end procedure

Where:
- SUM(OPS) is the sum of operations per second across all nodes.

 - SUM(MU) is the sum of memory usage across all nodes.

 - MAX(NL) is the maximum network time across all nodes.

 - BASE_BATCH_SIZE is a predefined baseline batch size.

- FLOOR is the floor function, rounding down to the nearest
integer.

 - MAX ensures that the batch size does not fall below 1.

By strategically optimizing task allocation based on each
node’s unique performance metrics, the algorithm efficiently
reduces processing bottlenecks and accelerates the model's
convergence. This detailed description provides an in-depth
understanding of the algorithm's operational implementation,
offering critical insights into the architectural design and
optimization of parallel training architecture.

3.4 Integrated Parallel training Methodology of the
‘BalanceNet Orchestrator’ Architecture

The BalanceNet Orchestrator algorithm, central to our
study, utilizes a unique Key-Query-Value structure for
dynamic task allocation, focusing on real-time server
performance metrics to efficiently distribute computational
tasks in distributed computing environments. To demonstrate
the BalanceNet Orchestrator's effectiveness in parallel
training, we incorporated the Distributed Data Parallel(DDP)
processing framework and the NVIDIA Collective
Communications Library(NCCL) in our experimental setup.
It's important to note that DDP and NCCL were used as tools
to facilitate the experimental validation of our algorithm,
rather than being integral components of the BalanceNet
Orchestrator architecture itself.

DDP provided the necessary infrastructure for parallel
execution across multiple nodes, enabling us to test and
evaluate the task allocation efficiency of the BalanceNet

Orchestrator in a controlled, parallel computing environment.
Similarly, NCCL was utilized primarily for its high-
performance communication capabilities in multi-node and
multi-GPU settings, crucial for handling the large-scale data
transfers and complex computations in our experiments. This
strategic use of DDP and NCCL underscores the versatility
and adaptability of the BalanceNet Orchestrator in enhancing
parallel training processes within various distributed
computing.

IV. EXPERIMENTAL EVALUATION
4.1 Experimental Environment

This study's experimental setup involved a system running
Ubuntu 20.04.6, equipped with four NVIDIA RTX 2080 Ti
GPUs, with each GPU dedicated to one of the four computing
nodes. This homogeneous hardware environment ensures
consistent computational capabilities across nodes, a critical
factor for accurately evaluating the BalanceNet Orchestrator's
parallel training performance.

4.2 Models and Dataset

In this study, our objective was to assess the BalanceNet
Orchestrator's efficacy in dynamic task allocation within
parallel training environments, using the KQV structure. For
this purpose, we selected a range of convolutional neural
network models including CNN, VGG16, ResNet, and
AlexNet due to their varied architectural complexities and
computational demands. These models, commonly used in
computer vision tasks, were chosen to demonstrate the
algorithm's ability to efficiently handle diverse workloads.

Furthermore, the MNIST dataset, widely recognized as a
standardized benchmark in the field of computer vision, was
utilized. This choice was strategic, not due to a focus on
computer vision, but to provide a familiar and efficient
platform for evaluating our algorithm's task allocation and
workload distribution capabilities. The widespread
recognition of MNIST ensures the reproducibility of our
results and facilitates a clear evaluation of the BalanceNet
Orchestrator's performance in a parallel processing context.

4.3 Experimental Methodology

This study's experimental design focused on evaluating
three task allocation strategies in parallel training
environments: the BalanceNet Orchestrator algorithm, n/1
Equal Distribution, and Random Distribution. These strategies
were applied across various convolutional neural network
models, including Baseline CNN, VGG16, ResNet, and
AlexNet, to assess their effectiveness in a parallel learning
context. The primary aim was to analyze and compare the
efficiency of these strategies, particularly focusing on weight
update times as a key performance indicator in parallel
training systems.

For each neural network model, we performed a total of
2400 weight updates to ensure a comprehensive evaluation.
To accurately assess the performance of each task allocation
strategy, we averaged the 'weight update time' metrics every
100 updates. This approach provided a granular insight into
the efficiency and effectiveness of the BalanceNet
Orchestrator in comparison to the other strategies over an
extended period. This methodology was crucial for identifying
trends and patterns in the performance data, thus offering a
robust evaluation of the algorithm's impact on training
efficiency and speed.

388

4.4 Experimental Results and Analysis

In our extensive evaluation of the BalanceNet Orchestrator
architecture, as detailed in Figures 3 to 7, we scrutinized the
performance across four convolutional neural network models:
Baseline CNN(Figure 3), AlexNet(Figure 4),
ResNet50(Figure 5), and VGG16(Figure 6). Each model
underwent assessment under three different task allocation
strategies: the BalanceNet Orchestrator method, n/1 Equal
Distribution, and Random Distribution. The principal metrics
for this analysis were training time and computational
efficiency, particularly focusing on communication time
during weight updates across nodes. This emphasis aligns
with our study's objective to enhance efficiency in distributed
training environments by reducing node-to-node
communication overhead and balancing computational loads
effectively.

4.4.1 Baseline CNN Model Analysis

In this study, the Baseline CNN model served as an initial
test bed for evaluating the BalanceNet Orchestrator. While
this model possesses a relatively simple architectural design,
it was critical for establishing a foundational understanding of
our algorithm's impact in a controlled environment. The
primary focus was not on the intricacy of the Baseline CNN
itself, but rather on its role as a benchmark to demonstrate the
BalanceNet Orchestrator's capability to enhance
computational efficiency in a straightforward setting.

The application of the BalanceNet Orchestrator to the
Baseline CNN model yielded a significant reduction in
computational time, recorded at 0.103ms. This reduction is
indicative of the algorithm's potential to streamline task
distribution processes, even in less complex neural network
frameworks. The efficiency observed with the Baseline CNN
model is a key indicator of the BalanceNet Orchestrator's
broader applicability and effectiveness. This foundational
analysis sets the stage for subsequent, more comprehensive
evaluations with advanced models like AlexNet and VGG16.
It confirms our hypothesis that the BalanceNet Orchestrator
can be a valuable tool for optimizing performance across a
spectrum of neural network architectures, thus highlighting its
practical utility in diverse AI models.

4.4.2 AlexNet Model Analysis

The AlexNet model, with an average performance metric of
0.212ms for the BalanceNet Orchestrator, highlighted its
capacity to handle complex workloads, outperforming the n/1
Equal Distribution(0.217ms) and Random Distribution
(0.244ms). This performance advantage is attributed to the
algorithm's effective management of AlexNet's unique
architecture and computational demands.

 Fig. 3. Baseline CNN Fig. 4. AlexNet

4.4.3 ResNet50 Model Analysis

ResNet50's performance under the BalanceNet
Orchestrator, with an average of 0.263ms, demonstrated the
algorithm's effectiveness in managing deep architectures.

Compared to the n/1 Equal Distribution(0.323ms) and
Random Distribution (0.283ms), this result highlights the
algorithm's ability to optimize task allocation in complex
networks.

4.4.4 VGG16 Model Analysis

For the VGG16 model, the BalanceNet Orchestrator's
performance metric of 0.263ms reflects its capability to adapt
to unique architectural demands, providing a more efficient
task allocation compared to the other strategies.

 Fig. 5. ResNet50 Fig. 6. VGG16

4.4.5 Analysis Summary

Our comprehensive analysis, as illustrated in Figure 7,
clearly demonstrates the BalanceNet Orchestrator's consistent
superiority over traditional task allocation strategies across all
tested models. In the Baseline CNN model, for instance, the
BalanceNet Orchestrator achieved a remarkable reduction in
computational time to 0.103ms, surpassing the n/1 Equal
Distribution and Random Distribution methods. Moreover, it
maintained uniform communication speeds at every weight
update, indicating a balanced and efficient processing across
the network. This pattern of enhanced performance was
similarly observed in the AlexNet, ResNet50, and VGG16
models, where the BalanceNet Orchestrator's average
performance metrics were 0.212ms, 0.263ms, and 0.263ms
respectively. These figures not only indicate significant
improvements in efficiency but also showcase the BalanceNet
Orchestrator's ability to optimize weight update times and
computational processes in various complex architectures.

A key factor in the success of the BalanceNet Orchestrator
is its dynamic task allocation mechanism, based on the real-
time analysis of node-specific metrics within the Key-Query-
Value framework. This meticulous approach, which takes into
account each node's capabilities and interrelations, illustrates
the sophisticated nature of the BalanceNet Orchestrator's task
allocation strategy. It also highlights the crucial role of
adaptive task distribution in improving the efficiency of
parallel training processes in distributed computing
environments.

Fig. 7. Model Comparison with BalanceNet Orchestrator

389

While the current study predominantly focuses on
convolutional neural network models within computer vision
tasks, we are planning to broaden our research horizons.
Future research will aim to apply the BalanceNet Orchestrator
across a diverse range of AI models, including those used in
natural language processing and other areas. This expansion is
not just about validating the algorithm's flexibility and
scalability; it's about establishing the BalanceNet Orchestrator
as a versatile and universally applicable framework for
efficient parallel training in varied and heterogeneous
computing environments.

V. CONCLUSION
In this study, the ‘BalanceNet Orchestrator’ architecture,

grounded in the Key-Query-Value dynamic task allocation
model, has been presented as a transformative solution for
parallel training in heterogeneous computational
environments. The BalanceNet Orchestrator 's adept handling
of node performance disparities and its real time adaptive task
distribution strategy have shown to significantly reduce
weight update latency and training durations, enhancing the
efficiency of network communications. This algorithm not
only presents a sophisticated approach to resource allocation
in parallel processing systems but also sets a foundation for
future advancements in AI, particularly in scaling up for large-
scale projects. Looking ahead, the plan is to broaden the scope
of BalanceNet Orchestrator to encompass a wider range of AI
models, further solidifying its role in advancing the field of
efficient parallel processing architectures.

AKNOWLEDGMENT
This research was supported by the MSIT(Ministry of

Science and ICT), Korea, under the ITRC(Information
Technology Research Center) support program(IITP-2023-
RS-2023-00258649) supervised by the IITP(Institute for
Information & Communications Technology Planning &
Evaluation) and the Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.RS-2022-
00155911, Artificial Intelligence Convergence Innovation
Human Resources Development (Kyung Hee University)).
Professor Eui-Nam Huh is the corresponding author.

REFERENCES
[1] Keuper, Janis, and Franz-Josef Preundt. “Distributed

training of deep neural networks: Theoretical and
practical limits of parallel scalability.” 2016 2nd
Workshop on Machine Learning in HPC Environments
(MLHPC). IEEE, 2016.

[2] Chen, Mingzhe, et al. “Distributed learning in wireless
networks: Recent progress and future challenges.” IEEE
Journal on Selected Areas in Communications 39.12:
3579-3605, 2021.

[3] Woodworth, Blake E., Kumar Kshitij Patel, and Nati
Srebro. “Minibatch vs local sgd for heterogeneous
distributed learning.” Advances in Neural Information
Processing Systems 33: 6281-6292, 2020.

[4] Hashemi, Sayed Hadi, Sangeetha Abdu Jyothi, and Roy
Campbell. “Tictac: Accelerating distributed deep
learning with communication scheduling.” Proceedings
of Machine Learning and Systems 1: 418-430, 2019.

[5] Ghosh, Avishek, et al. “Robust federated learning in a
heterogeneous environment.” arXiv preprint
arXiv:1906.06629, 2019.

[6] Ben-Nun, Tal, and Torsten Hoefler. “Demystifying
parallel and distributed deep learning: An in-depth
concurrency analysis.” ACM Computing Surveys
(CSUR) 52.4: 1-43, 2019.

[7] Verbraeken, Joost, et al. “A survey on distributed
machine learning.” Acm computing surveys (csur) 53.2:
1-33, 2020.

[8] Rudin, Nikita, et al. “Learning to walk in minutes using
massively parallel deep reinforcement learning.”
Conference on Robot Learning. PMLR, 2022.

[9] Song, Zhuoyang, et al. “Parallel Learning for Legal
Intelligence: A HANOI Approach Based on Unified
Prompting.” IEEE Transactions on Computational Social
Systems, 2023.

[10] Shoeybi, Mohammad, et al. “Megatron-lm: Training
multi-billion parameter language models using model
parallelism.” arXiv preprint arXiv:1909.08053, 2019.

[11] Yook, Dongsuk, Hyowon Lee, and In-Chul Yoo. “A
survey on parallel training algorithms for deep neural
networks.” The Journal of the Acoustical Society of
Korea 39.6: 505-514, 2020.

[12] Hashemi, Sayed Hadi. Timed execution in distributed
machine learning. Diss, 2020.

[13] Shi, Shaohuai, Xiaowen Chu, and Bo Li. “Exploiting
simultaneous communications to accelerate data parallel
distributed deep learning.” IEEE INFOCOM 2021-IEEE
Conference on Computer Communications. IEEE, 2021.

[14] Jia, Zhihao, Matei Zaharia, and Alex Aiken. “Beyond
Data and Model Parallelism for Deep Neural Networks.”
Proceedings of Machine Learning and Systems 1: 1-13,
2019.

[15] Peng, Yanghua, et al. “A generic communication
scheduler for distributed DNN training acceleration.”
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, 2019.

[16] Tang, Zhenheng, et al. “Communication-efficient
distributed deep learning: A comprehensive survey.”
arXiv preprint arXiv:2003.06307, 2020.

[17] Zhang, Jinghui, et al. "PipePar: Enabling fast DNN
pipeline parallel training in heterogeneous GPU clusters."
Neurocomputing 555: 126661, 2023.

[18] Yi, Xiaodong, et al. “Optimizing distributed training
deployment in heterogeneous GPU clusters.”
Proceedings of the 16th International Conference on
emerging Networking EXperiments and Technologies,
2020.

[19] Park, Jay H., et al. “{HetPipe}: Enabling large {DNN}
training on (whimpy) heterogeneous {GPU} clusters
through integration of pipelined model parallelism and
data parallelism.” 2020 USENIX Annual Technical
Conference (USENIX ATC 20), 2020.

[20] Jiang, Yimin, et al. “A unified architecture for
accelerating distributed {DNN} training in
heterogeneous {GPU/CPU} clusters.” 14th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 20), 2020.

[21] Weng, Qizhen, et al. “{MLaaS} in the wild: Workload
analysis and scheduling in {Large-Scale} heterogeneous
{GPU} clusters.” 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), 2022.

[22] Zhang, Zhen, et al. “Is network the bottleneck of
distributed training?.” Proceedings of the Workshop on
Network Meets AI & ML, 2020.

390

