
 

 

BalanceNet Orchestrator: A KQV-based Dynamic 
Task Allocation for Distributed Deep Learning 

 

Teh-Jen Sun  
Department of Artificial Intelligence 

Kyung Hee University 
Yongin-si, South Korea 
dlwmznzl1@khu.ac.kr 

 

Thien-Thu Ngo 
Department of Computer Science and 

Engineering  
Kyung Hee University 

Yongin-si, South Korea 
thu.ngo@khu.ac.kr 

Eui-Nam Huh 
Department of Computer Science and 

Engineering  
Kyung Hee University 

Yongin-si, South Korea 
johnhuh@khu.ac.kr

Abstract—In Artificial Intelligence(AI), training expansive 
models with billions of parameters necessitates substantial 
computational resources. This requirement has led to the 
adoption of parallel computing frameworks. However, these 
frameworks often confront node performance imbalances due 
to disparities in computational capabilities and network 
conditions. To address this issue, we introduce the BalanceNet 
Orchestrator(BNO), a dynamic task allocation algorithm 
designed to equilibrate workloads in parallel training 
environments. BalanceNet Orchestrator assesses and adjusts to 
node-specific performance in real time, facilitating optimal 
workload distribution and resource utilization. This method 
significantly enhances training efficiency and accelerates model 
convergence, presenting an efficient approach for training 
large-scale AI models within parallel training architecture.  

Keywords—AI, Parallel training, Distributed, heterogeneous 
environment 

I. INTRODUCTION 
The evolution of Artificial Intelligence(AI) has precipitated 

significant advancements across various fields, notably in the 
development and deployment of large-scale models for tasks 
such as language processing, image recognition, and complex 
data analysis[1][2]. The burgeoning size and complexity of 
these models necessitate augmented computational resources, 
highlighting the limitations of traditional single-node 
computing systems in terms of efficiency and scalability. 

The growing complexity of AI models has led to the 
adoption of parallel processing techniques within the research 
community[3]. These techniques aim to decrease the training 
time of large-scale models by distributing computational tasks 
across multiple nodes. However, the effectiveness of parallel 
processing is often hampered by inconsistent computational 
power, memory, and network capabilities across the 
nodes[4][5], leading to inefficiencies in workload distribution 
and synchronization. 

To address these challenges, this study introduces the 
BalanceNet Orchestrator, a novel architecture incorporating 
the Key-Query-Value(KQV) structure. BalanceNet 
Orchestrator is engineered to optimize task allocation within 
parallel processing systems, effectively managing the 
diversity of node capabilities and promoting more efficient 
resource allocation and utilization. By dynamically adjusting 
to real time performance metrics and leveraging the KQV 
structure, BalanceNet Orchestrator ensures a tailored task 
distribution to meet the specific needs of each node, 
significantly enhancing the overall efficiency of parallel 
learning. Figure 1 provides an overview of the BalanceNet 
Orchestrator architecture, demonstrating its utility in varied 

computational environments. This architecture not only 
analyzes each node's computational power, memory capacity, 
network bandwidth, and latency in real time, but it also 
addresses the complexity of interactions between nodes. This 
comprehensive approach includes tackling challenges such as 
minimizing the impact of external variables like network 
latency and alleviating bottlenecks in the learning process, 
ultimately aiming to enhance the scalability and efficiency of 
large-scale AI model training. 

 
Fig. 1. BalanceNet Orchestrator Overview 

II. RELATED WORK 
2.1 Parallel Training in Distributed Environments 

Parallel training in distributed environments is crucial for 
training large-scale AI models efficiently. This section covers 
several parallel processing strategies: data parallelism, 
distributing data across multiple processors; model 
parallelism, splitting the model across processors; and 
pipeline parallelism, dividing the model training into 
stages[6][7]. Recent studies have focused on combining these 
strategies to accelerate the training of extensive models[8][9]. 
Parallel training architectures usually employ Peer-to-
Peer(P2P) or master-worker node structures. P2P structures 
facilitate direct task distribution but increase communication 
overhead with more nodes. Conversely, master-worker 
structures, though complex, are more effective for large-scale 
systems by reducing communication costs[10]. 

Developing advanced algorithms and techniques to address 
challenges like load balancing, data synchronization, and 
resource allocation is essential for optimizing parallel training. 
These developments are vital for the swift and accurate 
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training of large-scale AI models[11], continuously evolving 
and shaping the future of AI model training. 

2.2  Task Allocation and Load Balancing Strategies 

Efficient task allocation and load balancing are 
fundamental in distributed systems for optimal system 
performance. This section focuses on algorithms and 
methodologies that dynamically distribute and adjust tasks 
based on the variable performance capabilities of individual 
nodes. These strategies are essential for addressing 
performance imbalances, enhancing system 
efficiency[12][13]. Research in space-search dynamic 
scheduling techniques is noteworthy, aiming to refine the 
efficiency of operations across nodes[14]. 

Building upon the task allocation and load balancing 
strategies discussed, the development of interfaces for 
asynchronous communication takes on a significant role[15]. 
These advanced interfaces are crucial in distributed AI models 
for scalable and efficient training, facilitating smoother data 
transfer and synchronization across nodes, a key aspect in 
parallel computing. Such advancements in communication 
protocols are instrumental in reducing latency and enhancing 
throughput, thereby contributing to more effective and rapid 
model training processes[16]. 

 
2.3   Heterogeneous Computing and Resource Optimization 

The increasing complexity of AI models necessitates 
advanced resource optimization in heterogeneous computing 
environments. This section covers efficient resource 
management and allocation in systems with diverse node 
capabilities, focusing on adapting resource usage to workload 
demands and maximizing underutilized resources like idle 
CPU and bandwidth in GPU clusters[17]-[19]. The rise of 
heterogeneous GPU clusters and cloud-based Machine 
Learning as a Service(MLaaS) solutions is also examined, 
showcasing their role in enhancing distributed learning tasks 
and addressing resource allocation challenges[20][21]. These 
developments indicate a trend towards more adaptive, resilient, 
and scalable AI infrastructures, improving computational 
efficiency and model accuracy in AI development[22]. 

III. THE PROPOSED SYSTEMS 
3.1. Main Framework 

In this study, the ‘BalanceNet Orchestrator’ architecture 
proposes dynamic task allocation mechanisms, addressing 
node performance imbalances within heterogeneous 
distributed computing environments. This section elaborates 
on the conceptual structure and theoretical underpinnings of 
the architecture, exploring strategic approaches to enhance 
distributed learning efficiency and reduce training times. 

The ‘BalanceNet Orchestrator’ architecture 
comprehensively evaluates each node's computational power, 
memory capacity, network bandwidth, and latency in real time, 
while simultaneously addressing the intricacies of node 
interactions. Its sophisticated approach dynamically aligns 
workloads with the capabilities of individual nodes and the 
complex dynamics of the network, striving to optimize overall 
system efficiency. Key to this strategy is addressing 
challenges like mitigating the impact of external factors such 
as network latency and easing bottlenecks that hinder the 
learning process. 

Figure 2 provides a detailed visual representation of the 
'BalanceNet Orchestrator' architecture. It illustrates the 
sophisticated design and operational functionality, 
showcasing how the architecture optimizes node performance 
and efficiently distributes tasks. This depiction clarifies the 
BalanceNet Orchestrator’s component in enhancing parallel 
training efficiency within distributed environments. 

Figure 2 Workflow Description: 

(1) Multiple learning nodes initiate the ‘BalanceNet 
Orchestrator’ architecture, forming a P2P structure for 
mapping performance metrics and IDs. These metrics are 
stored as ‘Key’, essential for determining each node's 
workload capabilities. 

(2) The system dynamically calculates metrics for each node, 
essential for ongoing parallel processing. This phase operates 
continuously on individual threads, adapting to real time 
performance changes. 

(3) Nodes are organized based on performance, involving 
steps like model initialization, task sequencing, and weight 
initialization. This process concludes with Batch Size 

Fig. 2. BalanceNet Orchestrator Architecture 
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Determination for each node, aligning with the ‘Query’ 
component of the KQV model, which dictates task assignment 
based on node capabilities. 

(4) Finally, the system concludes with dataset loading, leading 
to the commencement of parallel training. This step represents 
the dynamic allocation of nodes, corresponding to the ‘Value’ 
in the KQV model, ensuring optimal task distribution based 
on node performance and task requirements. 

This detailed workflow explanation underscores the 
intricate design and the significance of each component within 
the 'BalanceNet Orchestrator' architecture. Figure 2 adeptly 
demonstrates how each phase interconnects to enhance the 
overall system's performance, playing a crucial role in the 
effective management of nodes and optimization of task 
allocation within complex distributed learning environments. 
Such a systematic approach significantly boosts the efficiency 
of distributed learning systems, paving the way for more 
sophisticated and efficient approaches in AI model training 
methodologies. 

3.2 KQV-Based Mathematical Architecture of the 
‘BalanceNet Orchestrator’ Algorithm 

In this study, we introduce a KQV-based ‘BalanceNet 
Orchestrator’ Algorithm that incorporates a mathematical 
Architecture to address the issue of performance imbalance   
among nodes within parallel training environments. The 
adoption of the KQV structure is rooted in its ability to 
effectively handle the dynamic and complex nature of 
distributed learning systems. By breaking down the 
performance assessment into three distinct but interrelated 
components—Key, Query, and Value—the algorithm can 
precisely evaluate and address the unique needs of each node. 

This algorithm dynamically assigns workload to each node 
by continuously monitoring computational capabilities, 
memory usage(), and network latency(), optimizing 
task distribution in real time. It quantifies three primary 
performance indicators—Key, Query, and Value—which 
collectively determine the optimal batch size to be allocated 
to each node. This approach enables a more nuanced and 
adaptive task distribution, significantly enhancing the 
efficiency and scalability of parallel training processes. 
Specifically, the Key metric assesses the computational 
capability, the Query addresses the current demand or 
requirement of the node, and the Value represents the node 
itself, allowing for a tailored workload distribution that 
optimally utilizes each node's resources. 

The performance indicators  , memory weight  , 
network communication weight , and network latency  for node i are defined as follows: 

 = ∑                        (1) 

 represents the computational capacity of node  relative 
to the total computational capacity of all nodes in the network. 
This metric is critical for assessing each node's capability to 
handle computational tasks in the distributed system. 

 = 1 − ∑             (2) 

  evaluates the memory availability of node   in 
relation to the overall memory usage across all nodes. This 
indicator helps to determine how much memory each node 
can utilize without overburdening the system 

L = response − request           (3) 

 measures the overall network latency, calculated as the 
difference between the response time and request time in the 
network communication. This metric is crucial for 
determining the efficiency of data transfer and 
synchronization across the distributed system. 

 = 1 − 


  
           (4) 

  specifically denotes the network communication 
time between nodes   and  , capturing the latency in data 
transfer specific to that node pair. This metric is essential for 
optimizing node-to-node communication within the 
distributed network. 

With these definitions in,   represents the operations 
per second for node  ,   denotes the memory usage, 
indicating the amount of memory utilized by the node, and,   is the network communication time between nodes  and  , reflecting the latency in data transfer between nodes.  
signifies the total number of nodes. 

The batch size  to be allocated to node  is calculated by 
considering the performance indicators and workload 
requirements as follows: 

 =   +  + ∑   3 ×  , 1       (5) 

In Equation (5),   signifies the baseline batch size, 
establishing a standard for the initial task allocation among 
nodes. The floor function ⌊⋅⌋ rounds the computed value down 
to the nearest smaller integer, ensuring that the batch size 
remains an integer. The max function guarantees that the batch 
size for each node is never less than 1, ensuring every node 
receives at least a minimum workload. Here,  represents the 
relative computational capacity of node , and   reflects 
its available memory. The sum ∑     denotes the 
collective network communication weight for node   in 
relation to all other nodes, incorporating network latency into 
the task allocation process. 

This formula dynamically adjusts the batch size for each 
node, considering the computational power(K), memory 
usage(MU), and Network Communication Weight(NCW). By 
doing so, it enhances the overall efficiency of distributed 
learning and reduces training time. This mathematical 
approach allows the 'BalanceNet Orchestrator' Algorithm to 
effectively address the complexities inherent in distributed 
environments, leading to a more efficient and balanced 
workload distribution across the network. 

3.3 Operational Implementation of the ‘BalanceNet 
Orchestrator’ Algorithm for Parallel training 

In this section, we discuss the implementation of the 
‘BalanceNet Orchestrator’ algorithm, designed to address 
performance imbalances among computational nodes in 
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parallel training operations. This algorithm dynamically 
calibrates the allocation of batch sizes based on a real time 
analysis of each node's computational throughput, memory 
allocation, and network communication latency. The master 
node acts as a central aggregator of performance metrics, 
using this information to recalibrate workload distribution 
across the network, thus optimizing the overall throughput of 
the parallel training paradigm. 

The algorithm operates as outlined below: 

Algorithm 1  ‘BalanceNet Orchestrator’ for Parallel training 
1  Procedure DYNAMIC_KQV_TASK_ALLOCATION(rank, world_size, stop_event, 

update_interval) 
2  while NOT stop_event.IS_SET() do 
3   OPS[rank], MU[rank], NL[rank] = COLLECT_CURRENT_METRICS(rank) 
4   if rank IS FIRST_NODE then 
5    AGGREGATE_ALL_METRICS(OPS, MU, NL, world_size) 
6    K = [OPS[i] / SUM(OPS) for i in range(world_size)] 
7    MW = [1 - MU[i] / SUM(MU) for i in range(world_size)] 

8    NCW = [1 - NL[i] / MAX(NL) for i in range(world_size)] 

9    for node_id in range(world_size) do 

10     BS = MAX(FLOOR((K[node_id] + MW[node_id] + NCW[node_id]) 
/ 3 * BASE_BATCH_SIZE), 1) 

11     UPDATE_NODE_BATCH_SIZE(node_id, BS) 
12    end for 
13    DISTRIBUTE_BATCH_SIZES(world_size) 
14   else 
15    SEND_METRICS_TO_FIRST_NODE(OPS[rank], MU[rank], NL[rank], 

rank) 
16  end while 
17 end procedure 

 

Where: 
- SUM(OPS) is the sum of operations per second across all nodes. 

 - SUM(MU) is the sum of memory usage across all nodes. 

 - MAX(NL) is the maximum network time across all nodes. 

 - BASE_BATCH_SIZE is a predefined baseline batch size. 

- FLOOR is the floor function, rounding down to the nearest 
integer. 

 - MAX ensures that the batch size does not fall below 1. 

By strategically optimizing task allocation based on each 
node’s unique performance metrics, the algorithm efficiently 
reduces processing bottlenecks and accelerates the model's 
convergence. This detailed description provides an in-depth 
understanding of the algorithm's operational implementation, 
offering critical insights into the architectural design and 
optimization of parallel training architecture. 

3.4 Integrated Parallel training Methodology of the 
‘BalanceNet Orchestrator’ Architecture 

The BalanceNet Orchestrator algorithm, central to our 
study, utilizes a unique Key-Query-Value structure for 
dynamic task allocation, focusing on real-time server 
performance metrics to efficiently distribute computational 
tasks in distributed computing environments. To demonstrate 
the BalanceNet Orchestrator's effectiveness in parallel 
training, we incorporated the Distributed Data Parallel(DDP) 
processing framework and the NVIDIA Collective 
Communications Library(NCCL) in our experimental setup. 
It's important to note that DDP and NCCL were used as tools 
to facilitate the experimental validation of our algorithm, 
rather than being integral components of the BalanceNet 
Orchestrator architecture itself. 

DDP provided the necessary infrastructure for parallel 
execution across multiple nodes, enabling us to test and 
evaluate the task allocation efficiency of the BalanceNet 

Orchestrator in a controlled, parallel computing environment. 
Similarly, NCCL was utilized primarily for its high-
performance communication capabilities in multi-node and 
multi-GPU settings, crucial for handling the large-scale data 
transfers and complex computations in our experiments. This 
strategic use of DDP and NCCL underscores the versatility 
and adaptability of the BalanceNet Orchestrator in enhancing 
parallel training processes within various distributed 
computing. 

IV. EXPERIMENTAL EVALUATION 
4.1 Experimental Environment 

This study's experimental setup involved a system running 
Ubuntu 20.04.6, equipped with four NVIDIA RTX 2080 Ti 
GPUs, with each GPU dedicated to one of the four computing 
nodes. This homogeneous hardware environment ensures 
consistent computational capabilities across nodes, a critical 
factor for accurately evaluating the BalanceNet Orchestrator's 
parallel training performance. 

4.2 Models and Dataset 

In this study, our objective was to assess the BalanceNet 
Orchestrator's efficacy in dynamic task allocation within 
parallel training environments, using the KQV structure. For 
this purpose, we selected a range of convolutional neural 
network models including CNN, VGG16, ResNet, and 
AlexNet due to their varied architectural complexities and 
computational demands. These models, commonly used in 
computer vision tasks, were chosen to demonstrate the 
algorithm's ability to efficiently handle diverse workloads. 

Furthermore, the MNIST dataset, widely recognized as a 
standardized benchmark in the field of computer vision, was 
utilized. This choice was strategic, not due to a focus on 
computer vision, but to provide a familiar and efficient 
platform for evaluating our algorithm's task allocation and 
workload distribution capabilities. The widespread 
recognition of MNIST ensures the reproducibility of our 
results and facilitates a clear evaluation of the BalanceNet 
Orchestrator's performance in a parallel processing context. 

4.3 Experimental Methodology 

This study's experimental design focused on evaluating 
three task allocation strategies in parallel training 
environments: the BalanceNet Orchestrator algorithm, n/1 
Equal Distribution, and Random Distribution. These strategies 
were applied across various convolutional neural network 
models, including Baseline CNN, VGG16, ResNet, and 
AlexNet, to assess their effectiveness in a parallel learning 
context. The primary aim was to analyze and compare the 
efficiency of these strategies, particularly focusing on weight 
update times as a key performance indicator in parallel 
training systems. 

For each neural network model, we performed a total of 
2400 weight updates to ensure a comprehensive evaluation. 
To accurately assess the performance of each task allocation 
strategy, we averaged the 'weight update time' metrics every 
100 updates. This approach provided a granular insight into 
the efficiency and effectiveness of the BalanceNet 
Orchestrator in comparison to the other strategies over an 
extended period. This methodology was crucial for identifying 
trends and patterns in the performance data, thus offering a 
robust evaluation of the algorithm's impact on training 
efficiency and speed. 
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4.4 Experimental Results and Analysis 

In our extensive evaluation of the BalanceNet Orchestrator 
architecture, as detailed in Figures 3 to 7, we scrutinized the 
performance across four convolutional neural network models: 
Baseline CNN(Figure 3), AlexNet(Figure 4), 
ResNet50(Figure 5), and VGG16(Figure 6). Each model 
underwent assessment under three different task allocation 
strategies: the BalanceNet Orchestrator method, n/1 Equal 
Distribution, and Random Distribution. The principal metrics 
for this analysis were training time and computational 
efficiency, particularly focusing on communication time 
during weight updates across nodes. This emphasis aligns 
with our study's objective to enhance efficiency in distributed 
training environments by reducing node-to-node 
communication overhead and balancing computational loads 
effectively. 

4.4.1 Baseline CNN Model Analysis 

In this study, the Baseline CNN model served as an initial 
test bed for evaluating the BalanceNet Orchestrator. While 
this model possesses a relatively simple architectural design, 
it was critical for establishing a foundational understanding of 
our algorithm's impact in a controlled environment. The 
primary focus was not on the intricacy of the Baseline CNN 
itself, but rather on its role as a benchmark to demonstrate the 
BalanceNet Orchestrator's capability to enhance 
computational efficiency in a straightforward setting. 

The application of the BalanceNet Orchestrator to the 
Baseline CNN model yielded a significant reduction in 
computational time, recorded at 0.103ms. This reduction is 
indicative of the algorithm's potential to streamline task 
distribution processes, even in less complex neural network 
frameworks. The efficiency observed with the Baseline CNN 
model is a key indicator of the BalanceNet Orchestrator's 
broader applicability and effectiveness. This foundational 
analysis sets the stage for subsequent, more comprehensive 
evaluations with advanced models like AlexNet and VGG16. 
It confirms our hypothesis that the BalanceNet Orchestrator 
can be a valuable tool for optimizing performance across a 
spectrum of neural network architectures, thus highlighting its 
practical utility in diverse AI models. 

4.4.2 AlexNet Model Analysis 

The AlexNet model, with an average performance metric of 
0.212ms for the BalanceNet Orchestrator, highlighted its 
capacity to handle complex workloads, outperforming the n/1 
Equal Distribution(0.217ms) and Random Distribution 
(0.244ms). This performance advantage is attributed to the 
algorithm's effective management of AlexNet's unique 
architecture and computational demands. 

  
       Fig. 3. Baseline CNN     Fig. 4. AlexNet 

4.4.3 ResNet50 Model Analysis 

ResNet50's performance under the BalanceNet 
Orchestrator, with an average of 0.263ms, demonstrated the 
algorithm's effectiveness in managing deep architectures. 

Compared to the n/1 Equal Distribution(0.323ms) and 
Random Distribution (0.283ms), this result highlights the 
algorithm's ability to optimize task allocation in complex 
networks. 

4.4.4 VGG16 Model Analysis 

For the VGG16 model, the BalanceNet Orchestrator's 
performance metric of 0.263ms reflects its capability to adapt 
to unique architectural demands, providing a more efficient 
task allocation compared to the other strategies. 

 
 Fig. 5. ResNet50                   Fig. 6. VGG16 

4.4.5 Analysis Summary 

Our comprehensive analysis, as illustrated in Figure 7, 
clearly demonstrates the BalanceNet Orchestrator's consistent 
superiority over traditional task allocation strategies across all 
tested models. In the Baseline CNN model, for instance, the 
BalanceNet Orchestrator achieved a remarkable reduction in 
computational time to 0.103ms, surpassing the n/1 Equal 
Distribution and Random Distribution methods. Moreover, it 
maintained uniform communication speeds at every weight 
update, indicating a balanced and efficient processing across 
the network. This pattern of enhanced performance was 
similarly observed in the AlexNet, ResNet50, and VGG16 
models, where the BalanceNet Orchestrator's average 
performance metrics were 0.212ms, 0.263ms, and 0.263ms 
respectively. These figures not only indicate significant 
improvements in efficiency but also showcase the BalanceNet 
Orchestrator's ability to optimize weight update times and 
computational processes in various complex architectures. 

A key factor in the success of the BalanceNet Orchestrator 
is its dynamic task allocation mechanism, based on the real-
time analysis of node-specific metrics within the Key-Query-
Value framework. This meticulous approach, which takes into 
account each node's capabilities and interrelations, illustrates 
the sophisticated nature of the BalanceNet Orchestrator's task 
allocation strategy. It also highlights the crucial role of 
adaptive task distribution in improving the efficiency of 
parallel training processes in distributed computing 
environments. 

 
Fig. 7. Model Comparison with BalanceNet Orchestrator 
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While the current study predominantly focuses on 
convolutional neural network models within computer vision 
tasks, we are planning to broaden our research horizons. 
Future research will aim to apply the BalanceNet Orchestrator 
across a diverse range of AI models, including those used in 
natural language processing and other areas. This expansion is 
not just about validating the algorithm's flexibility and 
scalability; it's about establishing the BalanceNet Orchestrator 
as a versatile and universally applicable framework for 
efficient parallel training in varied and heterogeneous 
computing environments. 

V. CONCLUSION 
In this study, the ‘BalanceNet Orchestrator’ architecture, 

grounded in the Key-Query-Value dynamic task allocation 
model, has been presented as a transformative solution for 
parallel training in heterogeneous computational 
environments. The BalanceNet Orchestrator 's adept handling 
of node performance disparities and its real time adaptive task 
distribution strategy have shown to significantly reduce 
weight update latency and training durations, enhancing the 
efficiency of network communications. This algorithm not 
only presents a sophisticated approach to resource allocation 
in parallel processing systems but also sets a foundation for 
future advancements in AI, particularly in scaling up for large-
scale projects. Looking ahead, the plan is to broaden the scope 
of BalanceNet Orchestrator to encompass a wider range of AI 
models, further solidifying its role in advancing the field of 
efficient parallel processing architectures. 
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