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AbstractÐThe concept of a digital twin (DT) plays a pivotal
role in the ongoing digital transformation and has achieved
significant strides for various wireless applications in recent years.
In particular, the field of autonomous vehicles is a domain that
is ripe for exploiting the concept of DT. Nevertheless, there are
many challenges that include holistic consideration and integration
of hardware, software, communication methods, and collaboration
of edge/cloud computing. In this paper, an end-to-end (E2E) real-
world smart mobility DT is designed and implemented for the
purpose of autonomous driving. The proposed system utilizes
roadside units (RSUs) and edge computing to capture real-world
traffic information, which is then processed in the cloud to create
a DT model. This DT model is then exploited to enable route
planning services for the autonomous vehicle to avoid heavy traffic.
Real-world experimental results show that the system reliability
can reach 99.53% while achieving a latency that is 3.36% below
the 3GPP recommended value of 100 ms for autonomous driving.
These results clearly validate the effectiveness of the system
according to practical 3GPP standards for sensor and state map
sharing (SSMS) and information sharing.

Index TermsÐDigital twin, autonomous driving, roadside unit,
route planning, implementation.

I. INTRODUCTION

The realm of the Internet of Things (IoT) is rapidly ex-

panding beyond the conventional frameworks, branching out to

encapsulate a broader spectrum of digital connectivity [1]. This

emerging paradigm facilitates intelligent data sharing among

entities, thereby advancing our ability to monitor, control, and

optimize the physical world. As a prominent manifestation

of IoT, digital twin (DT) technology has begun to establish

its foothold across different industries [2]. The potential of

DTs lies in their capabilities to construct comprehensive digital

representations, thereby enabling bidirectional interaction be-

tween the physical space and cyber space [3]. Henceforth, DTs

empower real-time decision-making and enhance efficiency,

productivity, and adaptability in a multitude of applications [4].

With the rapid advancement in autonomous driving technolo-

gies, the convergence of DTs and autonomous vehicles presents

an exciting new frontier. The implementation of DTs within

the autonomous driving ecosystem creates vast possibilities for

improved safety, efficiency, and robustness of the system [5]. As

such, leveraging real-time synchronization between the digital

and physical worlds, autonomous vehicles can access global

information to ºsee more and see furtherº, enhancing their

awareness and understanding of the traffic environment [6].

Furthermore, a DT allows for effective testing and validation of

autonomous driving algorithms in a controllable and scalable

virtual environment, accelerating the development and deploy-

ment of autonomous driving [7].

Hence, there has been a growing interest in introducing the

concept of DTs in smart mobility [8]±[16]. The mainstream

roles of vehicular DTs are discussed and summarized in [8].

The authors in [9] proposed a DT-enabled scheduling archi-

tecture to help multiple vehicle users fulfill their personalized

requirements for path planning. Nevertheless, this prior work

[9] was only conducted and evaluated based on simulation

results, without realizing path planning for vehicles in a real-

world setting. Recent works in [10]±[12] investigated the

generation of highly accurate DT models by using various

onboard and infrastructure sensors with edge computing to

collect and process real-time information from the physical

space. However, the decision feedback from cyber space to

entities in physical space is not properly captured. In [13]±

[15], the implementation of DT systems was done in order to

provide situational awareness and cooperative driving services

for human drivers, which fails to consider the autonomy of

vehicles. To the best of our knowledge, there is a lack of

the holistic integration of DTs with autonomous vehicles, as

well as an absence of any practical end-to-end (E2E) system

designs and implementation of such a system. Hence, in our

previous work [16], we proposed a system architecture for

the smart mobility DT and conducted a preliminary proof-of-

concept (PoC) test. Our PoC provides a route planning service

that allows a vehicle to avoid overcrowded traffic. However, this

fundamental work in [16] only considered offline collection of

sensor data and overlooked the route planning decisions and

actions that were to be executed at the vehicle level.

In contrast to these prior works, the main contribution of

this paper is a real-time smart mobility DT framework for

autonomous driving, as well as a comprehensive real-world

implementation of this system. The proposed system requires a

realistic virtual representation of real-life traffic in autonomous

driving scenarios as well as the establishment of an effective

and stable request-feedback loop for the autonomous vehicle

to obtain cloud-based decisions. Thus, from a system design

perspective, the challenge lies in holistic consideration and

integration of hardware, software, communication methods,

and collaboration of edge/cloud computing. In addition, it is

important to implement and test the whole system in real-time

traffic conditions, which allows us to evaluate and validate the
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Fig. 1. System architecture of smart mobility DT.

performance of the designed DT. Hence, the system testing

is carried out in different scenarios to provide a thorough

analysis on the impact of various factors. In summary, our key

contributions include:

• We design a smart mobility DT that reflects objects of

interest in the context of road driving scenarios, e.g., roads,

infrastructures, vehicles, and pedestrians.

• We implement the DT platform for autonomous driving by

employing the roadside units (RSUs) and the autonomous

vehicle equipped with sensors, communication modules,

and edge computing capabilities.

• We design a cloud-based route planning service for the

autonomous vehicle based on real-time traffic information.

• Our results show the realization of the DT modeling and

demonstrate the effectiveness of the route planning service,

whereby the planned routes are successfully transmitted to

the vehicle for real-time execution.

• We validate the system performance in terms of reliability

and latency based on 3GPP standards for sensor and state

map sharing (SSMS) and information sharing.

The rest of the paper is organized as follows. Section II

provides a concise overview of the system design. Details about

hardware deployment, software installation, and route planning

are shown in Section III. Section IV discusses the experimental

evaluation. Section V concludes the paper.

II. DESIGN FOR SMART MOBILITY DT

We first develop and propose our DT system architecture

that is tailored for implementation in a specific but general-

izable environment. The proposed smart mobility DT system

is essentially based on our work in [16], [17]. This proposed

system enables real-time DT modeling and real-time feedback

services to the autonomous vehicle.

Fig. 1 gives the system architecture, consisting of au-

tonomous vehicles and RSUs in the physical world and a DT

system maintained within the cloud server. We exploit the

computing capabilities of the edge and cloud by distributing

various functions and services on these two planes. The edge,

referring to RSUs and autonomous vehicles, provides better

real-time operation in order to address delay-sensitive tasks

such as environmental perception and vehicle maneuvering.

Meanwhile, the cloud offers robust data processing capabilities

with higher latency, making it suitable for handling large-scale

and computation-intensive tasks that need global information,

such as DT modeling and deriving cloud-based services. Thus,

our system design incorporates edge and cloud computing to

enhance efficiency and safety for autonomous driving.

In the physical world, diverse sensors on the vehicle and

RSUs capture real-time data from their surroundings. Then the

vehicle can achieve a high level of autonomy, incorporating

functional modules such as navigation, perception, localization,

motion planning, and control. Similarly, RSUs use sensors for

object detection, tracking, and prediction, upload the perception

data to the cloud, and share it with nearby vehicles to enhance

their safety during the driving process.

The smart mobility DT within the cloud plane is dynamically

updated using real-time perception data from the physical

system, thereby accurately mirroring the current state of the

real-world traffic. After receiving the real-time perception data

from RSU edges, the cloud server synchronizes incoming edge

channels and locates detected objects based on their relative

coordinates to different edge sensors. By integrating with static

HD maps and 3D models, we can realize the generation of a vir-

tual representation from the physical space to cyber space. By

utilizing the smart mobility DT, we can facilitate the provision

of a variety of derivative services for autonomous vehicles that

include route planning, risk prediction, and congestion alerting.

Since these services are predicated on the comprehensive global

information from the DT, they can assist vehicles in evading

high-risk and congested areas outside onboard sensing horizons

and improving their overall commuting efficiency.

It is important to note that the communication within this sys-

tem is based on a heterogeneous vehicle-to-everything (V2X)

network [18], which includes vehicle-to-infrastructure (V2I),

vehicle-to-cloud (V2C), and infrastructure-to-cloud (I2C) com-

munications. Considering the large communication distance be-

tween vehicles and the cloud, the cellular network is applied for

V2C communication. Depending on the application scenario,

RSUs may send data of different levels to the cloud server and

nearby vehicles, such as raw data or processed data, which

have distinct requirements on communication coverage and

bandwidth. Hence, we use wired networks for I2C communi-

cation and employ both dedicated short-range communications

(DSRC) and millimeter wave (mmWave) technologies for V2I.
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TABLE I
COMMUNICATION REQUIREMENTS AND PERFORMANCES

Function Requirements Message contents Methods Performances

V2C
Speed: ≥ 80 Mbps
Coverage: ≥ 1 km

Upload: vehicle position and motion states.
Download: cloud-based decisions

WiMAX
≥ 120 Mbps
≥ 50 km

V2I

Speed: ≥ 1 Mbps
Coverage: ≥ 50 m

Cooperative perception (processed data,
e.g., detection and tracking result)

Wi-Fi router
≥ 10 Mbps
≥ 200 m

Speed: ≥ 1 Gbps
Coverage: ≥ 20 m

Cooperative perception (raw sensor data, e.g.
LiDAR point cloud and camera images)

WiGig
≥ 1 Gbps
≥ 120 m

I2C Speed: ≥ 1 Gbps Environmental perception (both raw data and processed data) Ethernet ≥ 1 Gbps

Fig. 2. Hardware components and Tokyo Tech. smart mobility field.

III. IMPLEMENTATION FOR SMART MOBILITY DT

In this section, we will discuss the implementation of our

system in the Tokyo Tech smart mobility field, as well as the

route planning workflow involved.

A. Hardware Deployment

Our testing field in Tokyo Tech Ookayama campus, as well

as our hardware devices, are shown in Fig. 2. In the field

setting, we have three RSUs and one autonomous vehicle.

The three RSUs are located at the corners of a square road

section within the campus. Each RSU is equipped with an

80-layer LiDAR. These sensors collect raw data from the

physical world, capturing information about dynamic objects

in the traffic environment. Additionally, each RSU is also

outfitted with edge computing devices, i.e., NVIDIA Jetson

AGX Orin, where we launch functional modules for functions

like object detection, tracking, and prediction, among others.

The communication between RSUs and the cloud server relies

on the campus Ethernet network. To cater to the requirements

of different application scenarios, we upload varying levels of

perception data, such as raw point cloud data, detection and

tracking results to cloud.

The autonomous vehicle is equipped with a 32-layer LiDAR

sensor positioned on the rooftop to sense its surroundings. A

dedicated Autoware PC is utilized for processing the LiDAR

data and performing environmental perception, localization,

motion planning, and motion control. The control signals are

then transmitted to the vehicle’s onboard unit (OBU) to enable

autonomous driving. Additionally, the vehicle is equipped with

communication modules, including worldwide interoperability

for microwave access (WiMAX) for V2C communication, a

Wi-Fi router as a replacement for dedicated short-range com-

munications (DSRC), and a WiGig antenna for millimeter wave

(mmWave) communication. The selection of communication

equipment is based on specific requirements and functions.

Table I shows the required communication speeds and coverage

in our experiment field, as well as the performance of selected

communication methods. These devices effectively facilitate

information sharing among edge and cloud planes.

The cloud server works as the central hub for data aggrega-

tion and storage, global information processing, and providing

feedback services to the autonomous vehicle. Therefore, the

performance requirements for the cloud server are very high,

which encompass scalability, processing power, and reliability

to efficiently and securely handle large volumes of real-time

data. Hence, we opted for a computer equipped with a GeForce

RTX 5000 GPU, ensuring ample memory and storage capacity

to meet the demanding computational requirements.

B. Software Installation

The software in our platform is centered around two key

open-source software, i.e., Autoware [19] and Robot Operating

System (ROS).

In the RSU edges and cloud server, we deploy Autoware

Universe and version 2 of the ROS (ROS2). Autoware Universe

serves as the primary software framework for our system. It

provides comprehensive functionality for the development of

autonomous driving systems, making it well-suited for DT

modeling. Autoware facilitates the detection and tracking of

traffic participants within the RSU sensor range. The detection

module applies the CenterPoint framework [20], which can

detect, identify, and visualize 3D objects from the LiDAR point

clouds in real-time. Then, a tracking algorithm, named Multi-

object Tracker [21], is responsible for assigning the detected

objects with IDs and estimating their velocities. Moreover,

Autoware Universe is built on ROS2, which enables easy

deployment and seamless communication among distributed

computers. In our case, both the cloud server and the RSU

edge computing devices are connected to the campus Ethernet

network and assigned IP addresses within a local area network

(LAN). Hence, we can subscribe to all the ROS2 topics on

the cloud server. The utilization of ROS2 greatly facilitates the

modeling of the DT and further enhances the interoperability
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Fig. 3. Sequence diagram of route planning service.

and scalability of the DT system. After acquiring object track-

ing data from three RSUs, the cloud server utilizes objects’

positions to align them with the corresponding road segments,

which facilitates traffic monitoring and the computation of

congestion level on each road section.

The Autoware PC onboard the autonomous vehicle is in-

stalled with an Ubuntu 16.04 operating system, enabling the im-

plementation of autonomous driving functionalities using Auto-

ware AI based on ROS. Autoware AI is responsible for driving

the vehicle’s LiDAR sensor and utilizes the normal distributions

transform (NDT) algorithm for LiDAR scan matching with the

3D point cloud map, which enables real-time localization with

centimeter-level accuracy. The route from origin to destination

is in the form of a prerecorded waypoint file, consisted of

a set of route points with position, velocity, and orientation

information. The automated vehicle can sequentially track these

waypoints to follow any given route. To perform local motion

planning and motion control, a velocity planner adjusts the

velocity plan based on the waypoints to decelerate or accelerate

in response to nearby objects and road characteristics, including

stop lines and traffic lights. Then, a pure pursuit algorithm is

employed to generate coordinated sets of velocities and steering

angles that guide the ego vehicle to follow the target waypoints.

C. Route Planning Scenario and Workflow

Based on the hardware and software implementation, we

design the workflow of the route planning service, as shown in

Fig. 3. There are two main sequences in the workflow, i.e., DT

modeling and route requisition. The DT modeling sequence is

a loop fragment for real-time edge sensing, detection, tracking,

and data acquisition on the cloud plane. Three RSUs run the

LiDAR driver, object detection, and tracking. The detection and

tracking results are transmitted from the RSUs to the cloud.

Then the cloud computing will help the ego vehicle choose the

optimal path to circumvent traffic congestion and to improve

its efficiency, using the shortest-paths algorithm like Dijkstra’s

algorithm and A* algorithm. Since the specific route planning

is not the primary focus of this paper, it is not elaborated upon

in detail here.

The route requisition sequence is an alternative combination

fragment, obeying the ªif then elseº logic. During the vehicle’s

movement from the starting point to the destination, it utilizes

LiDAR-based localization and the road vector map to calculate

(a)

(b)

Fig. 4. Real-time DT modeling: (a) Scenario #A: no congestion in the road
network, (b) Scenario #B: congestion occurs on the straight route

the distance between itself and upcoming intersections. When

the vehicle approaches an intersection, within a predetermined

threshold Dthre, it initiates a path request to the cloud server

via the hypertext transfer protocol (HTTP). The HTTP server

running on the cloud receives the request and sends the uniform

resource locator (URL) of the optimal path to the vehicle. Then

the autonomous vehicle downloads the route and tracks it for

vehicle navigation.

IV. EXPERIMENTAL DEMONSTRATION

In this section, we will show the outdoor test results and the

evaluation from the aspects of functionality and reliability.

A. Field Experiment Results

The real-time DT modeling results on the cloud plane are

illustrated in Fig. 4. As discussed in Section III.A, we up-

load diverse types of perception data in different application

scenarios. In this case, we only transmit object-tracking data

to alleviate communication loads. The tracking result has a

significantly lower data rate, ranging from 50 to 300 Kb/s,

depending on the number of detected objects, compared to

the raw point cloud data (approximately 46 Mb/s). Within the

LiDAR detection range of the RSU, various entities are iden-

tified and visualized using different colored bounding boxes,

indicating their categories, positions, and approximate shapes.

In the figure, pink boxes represent pedestrians, while blue boxes

represent vehicles. The tracking frequency can achieve a rate

of 30 Hz. The cloud server performs fusion and processing

of these recognized objects to choose the best global route

for the vehicle. We also mark the origin and destination of

the autonomous vehicle in this figure, i.e., the vehicle drives

from the bottom-left road segment to the bottom-right road

segment. In scenario #A, where no congestion is observed on

any road segment, the cloud server selects the straight route
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(a)

(b)

Fig. 5. Autonomous driving operation results: (a) Result #A: driving on default route, (b) Result #B: driving on alternative route

indicated by the blue dashed line. In scenario #B, congestion

occurs within the straight-line segment due to the presence of

pedestrians and vehicles. In such cases, the route planner selects

the path represented by the yellow dashed line, which has a

longer distance but effectively helps the autonomous vehicle

avoid heavily congested road segments, enabling an efficient

and smooth driving process.

The results of the autonomous driving operation, from real-

world images and Autoware visualization tool Rviz, are shown

in Fig. 5. During the initialization phase, the vehicle follows

the default straight route in the road network, so in both results,

the vehicle initially tracks the straight trajectory. When the ego

vehicle arrives at the predetermined threshold distance Dthre

from the intersection area, it will send a route planning request

to the cloud. Result #A corresponds to scenario #A, where the

vehicle downloads the same default path from the cloud and

successfully traverses the intersections in a straight manner.

Result #B corresponds to scenario #B, where congestion is

observed on the straight-line segment. In this case, the vehicle

downloads the alternative path from the cloud. The vehicle

makes a left turn and proceeds along the alternative route.

In our experiment setting, the threshold distance from the ego

vehicle to the intersection is determined with the consideration

of safety and comfort issues. The ego vehicle should have

enough time to process the planned route before reaching the

intersection. Given the presence of pedestrians crossing at inter-

sections, it is necessary for the vehicle to comfortably decelerate

and stop before reaching the intersection. In our system, the

ego vehicle’s free-flow speed vf is set to 15 km/h. Braking

can be classified into emergency and comfortable types. In

the presence of unexpected objects, the majority of emergency

braking deceleration is more than 4.5 m/s2 [22]. According to

Institute of Transportation Engineers (ITE) recommendations,

a comfortable deceleration rate acomfy should be less than 10

ft/s2, equivalent to 3.048 m/s2 [23]. Thus the threshold distance

is determined as Dthre = 0.039× v2f /acomfy = 2.9 m.

B. Evaluation

The proposed platform is evaluated from reliability and

latency. In DT modeling progress, congestion caused by heavy

traffic flow is not a typical concern in the campus environment.

Instead, congestion may arise during specific periods due to

high pedestrian volumes or gatherings. In our demonstration,

the frequency of changes in the path selection does not exceed

0.92 changes per minute. Hence, real-time route planning

decisions exhibit low sensitivity to time variations. On the

other hand, reliability, i.e., the packet delivery rate (PDR) in

communication from RSUs to the cloud server, is critical as

severe packet loss of tracking results could lead to incorrect

planning decisions. If only the tracking results are uploaded

from the RSUs, the PDR approaches 100%. When simultane-

ously uploading other levels of data, such as raw LiDAR point

clouds, the PDR is around 99.53%, which meets the reliability

requirement for SSMS, i.e., higher than 95% [24].
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Fig. 6. Latency in route planning service.

Fig. 6 shows the latency in the route request process,

including delays caused by localization and position check

Tlocal, path execution Texe on Autoware PC, and communication

Tcomm with cloud server. The maximum total latency Tmax is

96.61 ms, which is 3.39% below the threshold of the max E2E

latency requirements for information sharing (less than 100 ms)

proposed by 3GPP [24]. Assuming the autonomous vehicle

maintains the constant free-flow speed during this period, it

is still approximately 2.4 m away from the intersection. This

distance provides sufficient room for the vehicle to smoothly

maneuver through the intersection without deceleration or,

in the presence of pedestrians, to appropriately decelerate

(3.62 m/s2 on average, smaller than the emergency braking

deceleration 4.5 m/s2 [22]) and stop in front of the intersection.

V. CONCLUSION

In this paper, we have designed a smart mobility DT for

autonomous driving. Our system utilizes RSUs to capture real-

world traffic information, which is processed in the cloud to

create a real-time DT model, enabling route planning services

for the autonomous vehicle. We have implemented and demon-

strated the proposed system in the Tokyo Tech smart mobility

field. Test results show that the PDR of DT modeling can reach

99.53% and the latency of route planning service is smaller

than 96.61 ms, which validates the effectiveness of the system

in terms of reliability and latency. The latency performance

currently leaves room for improvement, indicating that future

work should focus on optimizing the communication system.
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