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Abstract—In recent years, automated driving has become 
viable, and advanced driver assistance systems (ADAS) are now 
part of modern cars. These systems require highly precise 
positioning. In this paper, a cooperative approach to localization 
is presented. The GPS information from several road users is 
collected in a Mobile Edge Computing cloud, and the 
characteristics of GNSS positioning are used to provide lane-
precise positioning for all participants by applying probabilistic 
filters and HD maps. 
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I. INTRODUCTION 
A lot of effort has been put into the development of 

automated driving, both in industry and in research. 
Nowadays, level 3 automated driving [1] for specific 
operational design domains [2] is already commercially 
available by several car manufacturers, such as Mercedes 
Benz’ Drive Pilot [3]. Yet, for fully automated driving, there 
are still challenges, especially in urban environment. 

Additionally, Advanced Driver Assistance Systems 
(ADAS), e.g., lane keeping assistant, or adaptive cruise 
control, have become more and more common. Thereby, 
various sensors, such as camera or RADAR, have found their 
ways into many modern cars. Furthermore, many cars have 
Global Positioning System (GPS) sensors on board for 
navigation and other systems. 

In the last decades, vehicle-to-vehicle and vehicle-to-
infrastructure communication (V2X) has been an ongoing 
research field. It is also integrated in modern series-production 
vehicles, such as the Volkswagen Golf 8 [4]. V2X enables 
many cooperative driver assistance systems (CoDAS) [5], 
such as cooperative blind-spot assistant [6] or cooperative 
adaptive cruise control [7]. These systems benefit from the 
V2X’s advantage of not requiring line-of-sight, unlike most 
other sensors. 

With the evolution of automated driving and V2X, a new 
domain has been established: cooperative driving. Many 
challenging situations for automated vehicles that are difficult 
with sensors only can be resolved by cooperative maneuvers. 
There are different forms, from long-term cooperation, such 
as highway platooning [8], to short-term negotiated 
maneuvers, e.g., merging at highway access ramps [8].  

There are several ways to organize cooperative driving 
maneuvers. One solution is to calculate trajectories for 
maneuvers and inform other vehicles about the intention. 
When the other vehicles agree and respond with matching 
trajectories, it is safe to drive the maneuver [9]. Other 
approaches are based on explicit negotiation and defined roles 
for the participating cars in a distributed state machine [10].  

Technologies such as automated driving or V2X can be 
found in modern series production cars already, while 

cooperative driving is still in research. However, in projects 
with field tests, such as TEAM [11] or IMAGinE [12], the 
feasibility of this technology has been proven. The 
possibilities of cooperative driving for complex maneuvers 
allow a wide range of usage of this technology. 

At the same time, car manufacturers equip their cars with 
cellular communication and provide additional assistance 
through custom backend services. The introduction of 5G 
communication also facilitates the rollout of cloud-based 
services. For more time critical applications, Mobile Edge 
Computing (MEC) provides a novel way of interaction 
between road users and services, so that location-based 
services can be supported by the infrastructure [8]. 

Automated driving, ADAS, and CoDAS rely on two 
essential technologies. For the planning of trajectories and for 
lane-precise assistance systems, a high definition (HD) map is 
required, which provides information about lanes and their 
relation to each other, e.g., in intersection areas. In order to 
make full usage of HD maps, it is necessary to have highly 
precise positioning available. The localization of a road user 
must be at least lane-level precise. One example for this is a 
cooperative traffic light assistant, which requires the system to 
know on which lane the road user is on. 

Most modern vehicles have a Global Navigation Satellite 
System (GNSS) sensor available, e.g., GPS. Furthermore, 
other road users, such as cyclists or users of micro-mobility, 
often have a GPS receiver in form of a smartphone in usage 
during rides. However, GNSS sensors suffer from various 
problems that result in an inaccuracy of up to several meters 
[13]. There are three sources for GPS errors: satellite-based 
errors, signal propagation errors, and receiver errors. Satellite-
based errors are mostly caused by inaccuracy of the internal 
satellite clocks. Atmospheric disturbances in the ionosphere 
and troposphere are the reason for the second category of 
errors. Receiver-based errors occur in the GPS device, e.g., by 
clock drifts or wrong calibration. The satellite and 
atmospheric error sources are similar to all nodes in a certain 
area. Therefore, knowledge about the position from several 
road users and additional information, such as HD maps, 
allow for localization improvement in cooperative systems.  

In this paper with Location as a Service (LaaS), a novel 
MEC cloud-based approach to improve the localization of 
connected road users is presented. By using the anonymized 
positions of several users and projecting them onto a HD map,  
the most likely lane of each participating user can be estimated 
with a probabilistic filter. This highly accurate lane position 
can be used in different assistance systems in vehicles and on 
smart phones for other road users.  

This paper is structured as follows: In the next section, an 
overview of the related work to our approach is given. In 
section 3, the architecture of the MEC cloud solution is 
presented. The MEC-based LaaS is then explained in detail in 
section 4. Following this, in section 5 the solution is evaluated 
and the results are discussed. An overview and an outlook on 
future developments are given in section 6. 

The work presented in this paper was conducted in the KIS’M 
project, funded by the German Federal Ministry for Digital and 
Transport (BMDV). 
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II. RELATED WORK 
GNSS systems are prone to positioning errors. In general, 

there are three systematic errors: satellite-based, signal 
propagation and receiver-based errors. In [13], an approach is 
explained, in which vehicles exchange the measured pseudo-
ranges to satellites, with which they are able to eliminate all 
common errors, i.e., all but the user-based errors. This method 
makes usage of the double difference by measuring the 
pseudo-range to a common set of satellites on a group of 
vehicles close to each other. As the satellite-based and signal 
propagation errors are the same for these vehicles, the double-
difference calculation removes them so that a precise relative 
position between these vehicles can be calculated. This 
solution applies Dedciated Short Range Communication 
(DSRC), so only users with respective hardware and a direct 
communication channel are able to benefit. 

A detailed evaluation of the double-difference approach is 
undertaken in [14]. In this paper, a weighted variation of the 
double-difference algorithm is presented, using the covariance 
of the GPS measurements. Moreover, the authors introduce an 
extended algorithm, where vehicles not only share the pseudo-
ranges, but also the calculated relative vector between each 
other. By using several relative vectors and road space 
constraints, the true absolute position can be estimated as well. 
In the evaluation, the solution with DSRC is compared to an 
approach that is centralized, just as LaaS. It is shown that 
centralized approaches outperform the distributed ones, as 
they can make use of more available input data. 

A hierarchical approach for relative cooperative 
positioning is presented in [15]. There are branch and leaf 
nodes, in which all leaf nodes are vehicles that are associated 
to a specific branch node vehicle. The leaf nodes with their 
respective branch node calculate the relative positioning 
between each other, making usage of common pseudo-range 
measurements. Moreover, a cooperative map-matching 
(CMM) algorithm is applied to estimate absolute positions and 
thereby a pseudo-range correction. The branch nodes 
exchange the pseudo-range corrections to make positioning 
improvements in a wider field. 

The CMM approach is introduced in [16]. In this solution, 
several neighboring vehicles exchange their pseudo-range 
measurements to calculate relative position between each 
other. Moreover, this approach calculates the position 
covariance and applies the road constraints of all neighboring 
vehicles based on map data. As the ellipse created by the 
covariance is the same for all neighboring vehicles using the 
same satellites, iterative application of all road constraints 
reduces the possible area on the map, where the vehicles can 
be located. 

A distributed algorithm calculating lane-precise positions 
is presented in [17]. As DSRC is used for this approach, only 
equipped vehicles can participate, and non-automotive users 
are excluded from the solution. Moreover, the lane 
information is not derived from HD maps, but the lane width 
is estimated. However, a lane estimation is successfully 
calculated, which can be used in ADAS. 

While this and many other solutions focus on lane-level 
positioning, i.e., lateral improvement, in [18], it is shown, how 
relative cooperative positioning can also be applied to 
improve the longitudinal GNSS error. The authors also make 
usage of lane-precise map information to apply road 
constraints. While vehicles driving on different lanes on the 

same road can reduce the lateral GNSS error, crossing 
vehicles at intersections can also improve their position in 
longitudinal direction. 

Another approach for cooperative relative positioning is 
introduced in [19]. The system combines standard V2X 
messages transmitted via DSRC, i.e., CAM messages, with a 
centralized positioning algorithm. The system is installed on 
toll bridges on highways. With the knowledge of its precise 
position, the system in the toll bridge can calculate the position 
delta and apply it on the received positions from the CAM 
messages. Thereby, the toll system can precisely track 
vehicles and associate the correct lane in the tollgate. 

An application of relative positioning in an ADAS is the 
cooperative active blind spot assistant (CABSA) [6]. The 
vehicles exchange their positioning constantly through 
standard CAM messages. After map matching, the relative 
position is calculated, and it is estimated whether other 
vehicles enter the blind spot area of the ego vehicle. If this is 
the case, CABSA warns the driver. 

A statistical analysis of GNSS errors and their elimination 
with the calculation of the double-difference of pseudo-ranges 
is presented in [20]. In a simulation, different GNSS errors are 
modelled, including multipath effects. In addition, Doppler 
effect analysis of moving vehicles is performed. It is shown 
that relative positioning can precisely eliminate most errors, 
except for multipath effects.  

III. MOBILE EDGE COMPUTING ARCHITECTURE 
The foundation for the data exchange of the LaaS 

participants is the Local Dynamic Map (LDM). This 
distributed service architecture provides the structure and API 
for the service. The overall architecture is composed of several 
clusters. Each cluster is coordinated by an LDM core, which 
controls the communication between all cluster components 
and the other clusters. For LaaS, for example, two clusters are 
used. On the one hand, the cluster for the LaaS service itself 
and, on the other hand, an edge cloud variant of the cluster for 
the participants of the service.  

Both within and between the clusters, communication 
takes place via Message Queuing Telemetry Transport 
(MQTT) [21], which enables messages to be classified and 
exchanged on the proposition of named topics. Furthermore, 
wildcards are possible in topic names. Thereby, it is possible 
for services to subscribe and respond to all participants 
without having to keep a specific channel open for each 
participant.  

LDM utilizes these possibilities by setting up a service 
topic structure according to defined patterns, which enables 
the efficient and dynamic exchange of service messages. This 
architecture is defined in the LDM library, which, in turn, is 
used by participants to implement the end applications. Due to 
this abstraction, the user does not have to specify topics 
manually. 

Likewise, anonymization of data is automatically 
performed to preserve privacy, despite the sharing of sensitive 
data such as current location. The distributed architecture 
helps to mask the user's identification details for the service. 
Only a randomly generated, changing ID is assigned, which is 
required to send the improved position back to the user. 

Service providers announce their services to their local 
LDM core through the LDM library, which then publishes it 
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on a predefined service announcement topic. The LDM core 
then takes over the task of ensuring that all clusters are also 
informed about the availability of the new service. Participants 
can then request a list of available services from their 
respective LDM core using the LDM library.  

Consequently, the participants receive a comprehensive 
description of the service from the core, as well as all the 
information needed to start an interaction with it. Accordingly, 
a participant can then prepare for the message exchange by 
creating the appropriate subscriptions and publishers to 
receive the response from the service and send the data to the 
services.  

After completing these preparations, the participant can 
then send a corresponding service request to the local LDM 
core. This forwards the message to the respective service 
independently of the cluster in which it exists. The service can 
now also set up the publishers and subscriptions if these have 
not already been initiated.  

From this point on, the service is ready for use by the 
subscriber. The participant can now send data to the service 
via the internally defined topics that have been adapted for the 
participant. The LDM library takes care of encryption.   This 
communication also runs via the corresponding LDM core 
instances, so that neither the service nor the participant 
receives any detailed identification features of the other. The 
service can then be used by the participant according to the 
request-response principle.  

In the case of LaaS, the position data of the subscriber is 
transmitted, and the improved position is returned by the 
service. Due to the wildcard topics, it is not necessary to log 
off explicitly from the services as a participant; it is simply 
sufficient to stop sending input. Furthermore, the use of the 
MQTT standard also makes it possible to use the Quality of 
Service Polices to ensure that even in error-prone networks the 
important messages arrive on time and meta messages, e.g., 
the service list, are cached efficiently and are thus 
immediately available to new participants. 

Fig. 1 illustrates the described architecture of the LDM in 
interaction with MQTT from the perspective of a participant. 
The left box contains the user cluster. Within this cluster, all 
components are connected via an MQTT broker. The LDM 
core of the cluster links the components with other clusters. 
This communication between the clusters is handled by 
another MQTT broker. Each LDM core is connected to this 
broker and thus integrated into the global system. The box on 
the right shows the service cluster with the LaaS service. This 

is basically structured in the same way as the user cluster. A 
broker connects all components in the cluster and an LDM 
core takes over the coordination of the components and the 
communication with the external clusters. 

The abstraction into clusters enables modular deployment. 
Many of the applications, e.g., LaaS, are time-critical; too high 
end-to-end latency would send back outdated data and thus 
provide no value to the client. By using mobile edge cloud 
clusters, both the entry point of the clients into the LDM 
system and the services can be offered in a geographically 
optimized manner, thus creating the physical prerequisite for 
low latency. The simple and easily parallelizable 
communication protocol enables the LDM cores to 
communicate efficiently with the clients and services. 
Nevertheless, the abstraction over several clusters also 
provides the necessary precautions to allow communication to 
take place anonymously. 

IV. LOCATION AS A SERVICE 
The GNSS location information derived from LaaS 

participants, i.e., a group of road users within spatial 
proximity, is used cooperatively to improve their positioning. 
This is achieved by combining two recursive state estimation 
techniques – a Kalman filter and a discrete Bayes filter. To 
obtain lane precise localization, a group of road users is 
mapped onto the road layout by probabilistically assigning 
them lanes. LaaS is fully integrated into the described LDM 
service architecture. 

A. GNSS Error Model 

 The accuracy of positions derived from GNSS systems 
such as GPS are subject to different error sources, often 
resulting in deviations larger than 5 meters.  

1) Satellite based errors are caused by inaccuracies local 
to the satellites sending GNSS signals to the receiver. This 
type of error is typically caused by clock drift and orbit errors. 

2) Signal propagation errors are caused by atmospheric 
influences on the signal while travelling from space to the 
receiver, e.g., humidity, atmospheric pressure, but also the 
reflection of the signals at surrounding structures like 
buildings (multipath propagation). 

3) Receiver errors are hardware and software-based 
errors that occur at the receiver device. 

 Individually, these errors might seem small. However, the 
sum of the resulting errors often makes the use of raw GPS 

Fig. 1 LDM architecture for LaaS 
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measurements unsuitable for ADAS like Green Light Optimal 
Speed Advisory (GLOSA) or collision warning systems. 

 The measurements of LaaS participants are derived from 
GPS receivers, e.g., smartphones, or are simulated based on 
the errors described above. A GPS measurement in the LaaS 
architecture contains the following parameters. 

• Timestamp in milliseconds 

• Position (latitude, longitude, altitude) 

• Heading (degrees) 

• Speed (m/s) 

B. Map Information 
Implementing LaaS requires highly accurate map 

information, provided by so-called HD maps. In contrast to 
traditional map models, which describe only the road network 
on a node-edge model, they provide precise information 
about lanes. Accurate knowledge of the number, width, and 
connecting links of all lanes is vital for the positioning of 
participants, especially vulnerable road users (VRU).  

That is why for the LaaS service, a highly detailed HD 
map was created. It contains all necessary information on the 
road and its lanes, as well as sidewalks and bike lanes. The 
map information is stored in a hierarchical structure, dividing 
roads into heavily linked map elements. Each element 
describes a piece of the road and consists of a constant 
number of car and bike lanes, sidewalks, and parking spaces. 
The information on the lanes is denoted in latitude and 
longitude, allowing for a precision in the centimeter range.  

C. Kalman Filter 
Apart from the receiver error and errors caused by 

multipath propagation, the errors of GPS receivers in 
proximity are assumed to be approximately the same. To 
mitigate the errors of individual GPS receivers, a basic 
Kalman filter, as described in [22] is used. It aims to smooth 
out the receiver noise and reduce leaps in the position 
measurements. Therefore, each measurement is filtered before 
being processed further. This way, the remaining errors are 
limited to the satellite and signal propagation errors, i.e., the 
errors that are the same for receivers within a spatially close 
range. The filter is tuned by approximating the sensor 
accuracy and its state space consists of the following 
parameters. 

• UTM Easting (m) 

• UTM Northing (m) 

• X-Velocity (m/s) 

• Y-Velocity (m/s) 

D. Lane Positioning 
A single GPS receiver does not provide the accuracy 

needed to determine on which lane it is located. Even after 
smoothing out the noise caused by errors in the receiver device 
with the Kalman filter, the satellite and signal propagation 
errors remain. For this reason, the positioning data of multiple 
road users within proximity are used cooperatively to compute 
the probability of a user occupying a specific lane. After 
filtering the GPS measurements of a group of spatially close 
road users, they all exhibit approximately the same position 
errors. Thus, they form an accurate depiction of how they are 

located relative to each other. For example, the distance 
between two cyclists can be determined accurately after 
filtering their position measurements, even though both 
positions have a large absolute error.  

This property, together with the assumption that the road 
users are either moving on the sidewalk, on car lanes or on 
bike lanes, are used to evaluate the probabilities of all possible 
lane assignments of the road users onto the road layout.  

The accurate lane location information from the HD map 
allows utilizing a discrete Bayes filter to derive lane 
probabilities for each road user within a road segment. The 
state space is represented by a set of hypotheses H. Each 
hypothesis h describes one possible mapping of all users 
within the road segment, where a user v is assigned to a lane l, 
as shown in Fig. 2.  

The discrete Bayes algorithm continuously updates the 
probabilities p for each set of lane assignments h whenever 
new measurements arrive. Initially, they are evenly 
distributed. For each set of new measurements, the discrete 
Bayes algorithm computes the new probabilities in the 
prediction step, followed by the update step.  

The prediction step updates the probabilities purely based 
on the Bayes filter result of the previous time step and its 
corresponding measurements. In this step, for all hypothesis h 
the heading angle of each road user is compared to the 
direction angle of the assigned lane. A low difference between 
those angles indicates that the road user remains on the same 
lane, increasing the probability of h. A large difference 
indicates a lane change, increasing the probabilities of the 
hypotheses that contain the lane assignment towards which the 
road user is headed. 

After predicting new probabilities for each hypothesis, the 
probabilities are updated in the update step. In this step, the 
most recent measurements of the road users are considered, 
i.e., the relative distances between them. All possible 
combinations of lane assignments of the users are iterated 
through by mapping each road user v onto an assigned lane l. 
Each realized mapping is considered as hypothesis h. Then, 
for each h, the relative distances between the road users are 
computed. These distances are compared to the relative 
distances between the originally measured positions filtered 
by the Kalman filter. Depending on the size of the difference, 
the probability for each hypothesis is increased or decreased. 

After the computation is completed, the hypothesis with 
the highest probability is selected. It most accurately 
resembles the originally measured relative distances between 
the road users, while placing them onto viable spots of the 
road layout. At last, the lane positions of the road users from 
the selected hypothesis are taken as the improved positions. 

V. EVALUATION 
The evaluation is conducted using a test scenario 

consisting of approximately 300 simulated GPS 

Fig. 2 Hypotheses H consisting of all possible lane assignments 
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measurements, generated with the simulation software 
PHABMACS [23]. Unlike real-world data, the simulator 
provides a ground truth. In this scenario, the movement of two 
Vulnerable Road Users (VRU), i.e., cyclists, and a car is 
emulated as they navigate a road comprised of four distinct 
lanes: two main vehicular lanes (referred to as lane 0 and lane 
1), a parking lane (lane 2), and a bicycle lane (lane 3). The 
scenario covers lane transitions and includes a curve. The 
chosen setting for this test scenario is in the vicinity of Messe 
Hamburg. The ground truth paths, prior to the introduction of 
the GPS errors, are depicted in Fig. 3.  

The car starts on lane 0 and changes to lane 1 briefly before 
the end of the scenario. The first cyclist starts on lane 2, 
switches to the main lane 1 after 20 seconds and changes to 
the lane 3, the cyclist lane, after another 40 seconds. The 
second cyclist starts on lane 3 and switches to lane 1 after 60 
seconds, before moving to lane 0 towards the end of the 
scenario. In Fig. 3, the participating road users can be seen 
initially on the right side, from bottom to top, driving towards 
the left side during the scenario.  

The simulation measures the positions, speed, and heading 
of the road users with virtual GPS sensors. To emulate GPS-
induced errors from the receivers, multiple error models are 
integrated into the simulation. First, a consistent GPS offset 
(bias) is applied to the ground truth traces generated for each 
road user. This offset is defined as -8 meters east and +8 
meters north, leading to an average Euclidean error of 
approximately 11.3 meters, which is a typical bias for GNSS 
[24]. This bias aims to replicate the uniform GPS 
discrepancies observed among receivers in close spatial 
proximity.  

Subsequently, an error, derived from a Gaussian 
distribution, is introduced to each measurement point. The 
receiver noise for GPS is usually around 0.5 meters. Despite 
this, the algorithm is tested with increasing position errors, as 
effects close to the receivers like multipath propagation also 
affect the measurement errors.  

The standard deviation of the distribution, represented as 
σpos, is configured within a range of 0 to 4 meters for both the 
easting and northing error. Furthermore, errors in velocity 
(meter per second) and in heading (radians) as Gaussian noise 
is added with σvel values of 0.25 m/s in the configurations with 
lower position errors or 0.5 m/s in the configurations with 
higher position errors. The standard deviation for the heading 
σheading is set fixed at 0.05°. Typically, for GPS, the errors in 
velocity depend on the position errors, i.e., higher position 
errors yield higher velocity errors. As the methods to compute 
velocities vary between different receiver devices, two 
different standard deviations for velocity are assumed. The 
GPS measurements are transmitted as messages in the LDM 
architecture to the LaaS service. 

To illustrate the impact of the Kalman filter in LaaS, the 
implementation is tested on both unfiltered and filtered 
measurements. To evaluate the results of the simulation run, 
two metrics are used to compare the original error values with 
the reduced errors. The Root Mean Square Error (RMSE) 
quantifies the discrepancy between the ground truth and the 
improved positions. The average distance between the ground 
truth and the improved positions is calculated using the 
Average Euclidean Distance (AED).  

Table I presents the mean results of 20 simulation runs for 
each specified error configuration. Lane assignments are 
assessed based on the ratio of correctly assigned lanes, 

 
Kalman 
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σpos 
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RMSEy 
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AED 
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✔ 0.5 0.25 1.93 2.58 2.75 0.91 
✘ 1.0 0.25 2.07 2.90 3.07 0.87 
✔ 1.0 0.25 1.95 2.70 2.83 0.88 
✘ 2.0 0.5 2.30 3.30 3.47 0.79 
✔ 2.0 0.5 2.11 2.95 3.00 0.80 

✘ 4.0 0.5 3.62 4.42 4.90 0.68 
✔ 4.0 0.5 3.10 3.70 4.10 0.66 

 

TABLE I. RESULTS 

Fig. 4  Lane assignments computed by the lane positioning algorithm 
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Fig. 3  Ground truth traces of the test scenario 
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denoted as “accuracy”. Overall, the findings reveal that the 
LaaS lane positioning algorithm decreases the AED by over 
55% across all simulated error models. 

Fig. 4 illustrates the lane assignments over time, as 
determined by the lane positioning algorithm. The simulated 
GPS measurements retain a bias of -8 meters east and +8 
meters north, complemented by Gaussian noise parameters set 
at σpos = 1.0 m, σvel = 0.25 m/s, and σheading = 0.05°. This figure 
highlights the accurate mapping of three road users to their 
respective true lanes.  

VI. SUMMARY 
With LaaS, a system is presented that allows not only 

automotive vehicles but also all users with a device that has 
cellular connection and a GNSS receiver, e.g., VRUs, to 
improve their position with lane-level precision. The solution 
is implemented as a MEC cloud service to reduce latency and 
to allow time critical ADAS using the improved position. 

Road users who want to participate, publish their position 
to the service in an anonymized way. The service collects the 
positions of several users and applies a lane-matching 
algorithm to each one. Before the lane matching, a Kalman 
Filter is applied to smoothen the GNSS tracks of all users. 

As positions in close vicinity share the same GNSS error, 
the relative positions between them are highly accurate. For 
the calculation of the lane assignments, a Bayesian Filter is 
used. In each step, the position of a reference user is assigned 
to different lanes in an HD map, including sidewalks and cycle 
lanes. Consequently, the positions of all close users are 
assigned to different lanes. Thereby, the necessary lateral shift 
compared to the original relative position is measured.  

The combination of lane assignments that yields the least 
combined lateral shift distance is assigned the highest 
probability. The LaaS system responds to all users with a 
corrected absolute position. With the usage of an HD map, a 
precise absolute position is derived for all users. 

The evaluation in a simulation environment uses different 
error models. The experiments show that in all error 
configurations, the overall error is significantly reduced and 
an accuracy of more than 90% can be achieved for the lane 
assignment. With this accuracy, many ADAS, e.g., emergency 
vehicle warning, can be realized. 

As navigation and assistance systems for cyclists and 
micro-mobility are increasingly common, real-world 
evaluation is planned to show the accuracy of LaaS. As no 
ground-truth is available for GPS receivers, this evaluation 
can make usage of pre-defined routes. Test-drives with real 
cars and cyclists show that the accuracy is very high. For 
further evaluation, also other error sources of GPS, e.g., urban 
canyons, can be taken into account. These errors can be 
mitigated by combining cooperative positioning with other 
localization techniques, e.g., LIDAR localization [18]. 

In a next step of implementation, LaaS can be combined 
with other MEC services to improve the safety and efficiency 
of traffic. While ADAS in general are implemented on the user 
side, some ADAS can also be realized as MEC services. For 
example, a cloud based GLOSA can calculate approach times 
to traffic lights for the participants. 
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