
Life Cycle Automation of IoT Services over
Multiple Edge Clouds

Mafeni Vitumbiko
School of Electronic Engineering

Soongsil University
Seoul, Korea

vitumafeni@dcn.ss.ac.kr

Younghan Kim
School of Electronic Engineering

Soongsil University
Seoul, Korea

younghak@ssu.ac.kr

Abstract—In the rapidly evolving landscape of edge computing
for IoT service provisioning, the challenges of managing and
deploying applications across a diverse array of edge devices in
multi-edge setups are evident. Edge devices, often situated on
users’ premises, exhibit heterogeneity in hardware and software
requirements. Furthermore, manual cluster setup and software
packaging for each edge site become impractical when trying to
cater to the specific needs of each edge device. Developers are
often required to set up an edge cluster, continuously create soft-
ware packages tailored to individual edge devices and end-user
requirements, all while managing multiple application versions
and redeploying them across a fleet of edge devices. To address
these challenges, this paper proposes an innovative solution that
simplifies IoT microservice deployment across multiple edge sites,
accommodating the intricacies of device diversity and different
end user requirements.

Index Terms—IoT, Multi-edge, Kubernetes, CI/CD

I. INTRODUCTION

The Internet of Things (IoT) is revolutionizing the conven-
tional methods of conducting business in sectors like precision
agriculture, automotive manufacturing, health monitoring, and
more. IoT systems are typically extensively dispersed across
multiple geographic areas, often incorporating cloud and edge
computing methods that operate in proximity to where intelli-
gence and processing capabilities are deployed [1]. Edge com-
puting brings the services and cloud utilities closer to the de-
vices and end users enabling fast processing, quick application
response time and low latency to delay-sensitive applications
[2]. Companies initially begin with small-node clusters and
eventually scale up to deploy hundreds, or even thousands,
of clusters to support their applications [3]. A multi-cluster
setup involves several clusters deployed across one or many
data centers separating development and production instances.
Nonetheless, overseeing multiple Kubernetes clusters presents
distinct challenges. Each cluster has its own control plane,
necessitating individual configuration for networking, security,
and policies. Additionally, achieving automated deployments
and efficient resource management across these clusters is
exceedingly difficult without a centralized solution. This would
involve manual deployment and the synchronization of con-
figurations for each cluster, which is not a scalable approach
[4]. One way to effectively manage multi clusters is through
Continuous Integration and Continuous Deployment (CI/CD)

platforms for Kubernetes [5]. CI/CD is used to support the
collaborative software development process. CI/CD automates
a wide range of activities in the development workflow such as
testing, linting, updating dependencies, creating and deploying
releases, and so on [6]. The IoT industry faces the challenge of
rapid innovation, necessitating faster software updates to edge
devices. However, as the industry grows, complexities arise in
delivering large-scale updates, like customizing service soft-
ware as a service for diverse edge devices and different user
requirements [7]. This article discusses the concept of CI/CD
for IoT edge, which entails not only automating the setup of
IoT clusters and the building and testing of software modules
for edge devices but also automating the release process. The
article presents an architectural model for a highly distributed
IoT system spanning both cloud and edge components, along
with a CI/CD workflow for customized services on edge
nodes. This approach enables software vendors to deliver their
software services on demand through cloud providers, while
the installation and configuration of software at the edge are
managed through a defined set of pipelines. We select an open
source project Nephio to bootstrap IoT edge clusters backed up
by Kubernetes Controllers and Custom Resource Definitions
(CRDs) for provisioning IoT ”leaf” nodes. Furthermore, we
leverage Kpt and Config sync to accomplish a CI/CD approach
to enable rapid and automated software deployment. Our main
contributions are as follows;

• Bootstrapping IoT Infrastructure: We utilize open-source
projects to bootstrap Kind clusters for IoT deployment,
ensuring efficient and reliable operations.

• CI/CD Automation for IoT Edge: Our solution automates
the deployment of IoT services across multi-edge IoT
environments.

• Heterogeneous Edge Management: We integrate modules
or services for seamless management of diverse edge IoT
requirements.

The rest of the article is structured as follows. Section II
presents related work. Section III presents the proposed system
description. Section IV presents preliminary experiment and
evaluation of the proposed work. Finally, section V presents
our future planned directs and conclusions.

535979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

Fig. 1. Proposed Architecture

II. RELATED WORK

This section presents various existing studies in relation to
our study with distinct components and focus.

The paper [7] discusses implementing DevOps in IoT edge
computing, emphasizing precision agriculture as a case study.
It showcases how DevOps enables continuous delivery of
tailored software updates to edge devices, potentially leading
to new business models at the IoT edge. The study outlines
an architectural model for a distributed IoT system and a
continuous delivery process for edge nodes, demonstrating its
practical application.

The literature in [8] addresses the lack of proper tool support
for orchestrating and deploying software systems across IoT,
edge, and cloud environments. It introduces a framework
called GeneSIS, which enables the continuous orchestration
and deployment of IoT systems. GeneSIS is designed to handle
the heterogeneity present at each level (IoT, edge, and cloud)
and facilitates the control of software systems across these
infrastructures.

Authors in [9] examines multi-domain Kubernetes setups,
which use multiple clusters for better workload management. It
introduces an automatic method, the Multi-Cluster Orchestra-
tor, to generate network security policies in each cluster. This
reduces configuration errors, promotes consistent policies, and
enables seamless communication between clusters in complex
deployments.

Another study in [10], examines the use of GitOps, a De-
vOps practice, in Edge Computing for IoT. It investigates the
feasibility of applying GitOps to IoT Edge Computing using

CNCF tools and identifies drawbacks, including limitations in
infrastructure provisioning and support for edge devices.

III. SYSTEM DESCRIPTION

In this section, we introduce the main conceptual parts of
our proposal and select an open source project, Nephio [12],
as the framework software. We select an open source project
Nephio to achieve our goals in this manuscript. Nephio is
a Kubernetes-based system that automates network functions
and infrastructure, enabling high-level intent expression and
intelligent automation for cloud and edge setup and network
configuration delivery [11]. We chose the approach used in the
Nephio project and apply it for IoT management.

A. System Architecture

In our architecture, Fig. 1, we have three cluster types:
the management cluster, the regional cluster, and the edge
cluster. The management cluster is the central hub where
Ansible scripts, using kpt packages, install all necessary com-
ponents. All the components for bootstrapping are stored in
Management Infra Repository. The management cluster serves
as the central management point for both regional and edge
clusters. Here, we introduce custom resources and controllers
to manage and enable interaction with IoT devices on the edge.
IoT devices are controllable from the management cluster,
providing information about their connection to specific edge
clusters and their operational status. On the other hand, the
regional cluster comprises the control plane, IoT custom con-
trollers, and custom resources, facilitating local management
of IoT leaf and edge nodes. It also incorporates ConfigSync to

536

Fig. 2. CI/CD process step by step

ensure synchronization of IoT applications and Git repository
updates. Similarly, the edge clusters utilize ConfigSync for the
same synchronization purposes.

B. Automated CI/CD Pipeline

After bootstrapping the clusters and installing the IoT
framework during setup, IoT services can be deployed de-
pending on the site requirements. All services are bundled up
in Kpt packages format stored in the github repositories for
each site. Once we create//modify a resource, the deployment
controller will fetch from here. In our pipeline, we assume
the involvement of two developers interacting with two edge
clusters where our IoT services are deployed. Different users
may require various types of services, either free or paid, and
IoT device modules are deployed based on the available leaf
devices. Consequently, developer A is responsible for updating
services on edge devices by modifying and customizing the
configuration files. When service modifications are made to
meet specific requirements, Porch is notified via the Kuber-
netes API server. This triggers Porch to fetch packages from
the IoT repository, create a corresponding Git branch in the iot-
workload-service-modules branch. To deploy these changes or
updates, developer B must first approve them. Upon approval,
ConfigSync, which monitors the repository, retrieves the latest
changes and replaces the service on the edge device. This
process is further illustrated in Fig. 2

Fig. 3. Kpt IoT packages for different Agriculture IoT service requirements

537

Edge computing at the edge exhibits heterogeneous charac-
teristics, primarily stemming from the presence of diverse IoT
edge devices that demand various IoT modules for interfacing
with these devices. Moreover, end-users may seek access to
different categories of IoT services, including both premium
and free offerings. Premium services often encompass ad-
vanced features, assisted by machine learning, in contrast to
free services. To address these requirements, we consolidate all
IoT services into a single Kpt package (see Fig. 3) and make
necessary adjustments. The PackageVariantControllerSet is
responsible for determining the deployment location for each
service, which is orchestrated through Porch and subsequently
pulled to the edge using ConfigSync.

IV. PRELIMINARY EXPERIMENT AND EVALUATION

This section will focus on deploying microservices and
verifying the feasibility and performance of our proposal on
the multi edge setup. Our primary focus is on comparing the
time required to update and deploy IoT applications at the
edge once deployments and configurations are modified in the
repositories and the central management cluster. To ensure
the validity of our findings, we perform these tests using
identical applications and services. Additionally, we scrutinize
and compare the complexity associated with configuring and
managing the edge clusters in the context of IoT deployment.

A. Experiment use case scenario

We assume that multi-edge sites can be used in smart farms.
Edge sites are considered as different farm sites belonging
to different farmers. These sites can exhibit varying charac-
teristics, such as geographical position, network bandwidth,
and the crops grown. Consequently, each edge site would
require services directly tailored to its specific needs. For
instance, farmers might require premium services coupled with
machine learning capabilities. Thus, we have created two types
of services: basic and premium services, with the premium
services enhanced by a machine learning model for predicting
future conditions in the field.

B. Experiment setup

In our initial implementation, we have established a multi-
cluster architecture to efficiently manage IoT devices and
services. All the components are running on Kind clusters on
a Virtual Machine (VM) running Ubuntu 20.04 LTS OS.

The Management Cluster, which acts as the central com-
mand center for all other clusters and deployments. We assume
that regional clusters are spread across different geographic
regions, serve as the workhorses for application workloads.
These Regional Clusters are augmented with custom IoT com-
ponents to streamline application deployment and management
for leaf devices on the edge clusters.

Strategically positioned at the edge sites, edge clusters
are dedicated to local processing and serving IoT devices,
including device mappers. To enable precise management
of leaf node devices, we have introduced Custom Resource
Definitions (CRDs) on the clusters to enable accessing the

apiVersion: iot-nephio.iistrc.dcn.com/v1alpha1

kind: IoTDevice

metadata:
name: iot-device-example

namespace: default

spec:
configuration:

edgeSite: edge01

deviceMapper: collection-mapper-demo:v1

targetDevices:
- model: DHT11

- model: RelayModule

telemetry:
dataFrequency: 60s

dataFormat: JSON

dataStorage:
type: Cloud

endpoint: http://192.168.1.102/api/store

status:
iot-devices:

- model: DHT11

properties:
- name: temperature

accessMode: ReadOnly

type: float

units: "°C"

- name: humidity

accessMode: ReadOnly

type: float

units: "%"

reported:
- name: temperature

value: 25

timestamp: "1699431851"

- name: humidity

value: 65

timestamp: "1699431851"

- model: RelayModule

properties:
- name: RM-pump-01

accessMode: ReadOnly

type: bool

reported:
- name: RM-pump-01

value: Off

timestamp: "1699431851"

Listing 1: An example of a Custom Resource on Management
Cluster for connected IoT Devices on Edge site.

status of the IoT devices (sensors and actuators). An example
of the custom resource introduced is shown in Listing 1.

C. Results and Evaluation

This section presents preliminary results of our proposed
framework for deploying an agricultural prototype using the
pipeline approach described. We compared our work with an
existing study cited in [1] and utilized their code for some of

538

the modules available at https://github.com/rlopezv/aaas/aaa-
azure. We measured the average time it takes to deploy
services to the edge sites from the moment a Kpt package
is approved in the management cluster. Subsequently, we
compared the time required for our framework to deploy the
same services or modules to the framework proposed in [1].
The results are depicted in Fig. 4. We calculate the Average
Pipeline Execution Time (APET) of the frameworks by using
the formula in 1

APET (t)FW =

∑n
i=1 PETi

n
(1)

Where

APET (t)FW : Average Pipeline Execution in time t for a Framework.
n∑

i=1

: Summation overn stages in the pipeline.

PETi : The execution time of each stage in the pipeline.

n : The total number of pipeline stages.
(2)

Fig. 4. Average Pipeline Execution Time

The first bars displays the average execution time required to
complete the deployment of packages or modules for the first
time. The second part presents the execution time for applying
and replacing packages when deployments and configurations
are modified. The first time takes much time due to docker
pulling images from remote registry. The results indicate that
our proposed framework outperforms the compared solution
when deploying similar modules to the edge, with a signifi-
cantly lower average execution time.

TABLE I
DEPLOYMENT WITH VARYING CONDITIONS IN MINUTES

First Second Third Fourth
Edge01 20 15 14 5
Edge02 18 11 7 3
Edge03 23 18 14 8

As shown in table I, we evaluate the time it takes to deploy
packages to multiple sites all at once, including the time it
takes for the services to start running and become available
for usage. We modify IP tables to emulate poor connections in

the edge clusters while deploying the applications. The first at-
tempt will take longer to apply the configurations compared to
subsequent attempts. Nevertheless, the platform demonstrates
its ability to work effectively even in poor network conditions,
deploying services to multiple edges simultaneously.

V. CONCLUSION AND FUTURE DIRECTIONS

In this study, we have introduced our architectural frame-
work designed to automate and manage IoT service delivery
and IoT device management following the CI/CD approach.

Our future plans include extending this architecture to en-
compass a broader range of IoT deployment and management
scenarios at every stage of the multi-edge environment. Addi-
tionally, we intend to conduct more experiments to benchmark
our framework for performance and scalability. We are also
exploring the integration of additional features and algorithms
to ensure accurate software deployment. This may involve
the implementation of machine learning techniques to detect
performance issues in new software releases.

ACKNOWLEDGMENT

This work was partly supported by Institute of Information
& communications Technology Planning & Evaluation (IITP)
grants funded by the Korea government (MSIT) (No. 2022-
0-01015, Development of Candidate Element Technology for
Intelligent 6G Mobile Core Network and No. 2020-0-00946,
Development of Fast and Automatic Service recovery and
Transition software in Hybrid Cloud Environment)

REFERENCES

[1] R. López-Viana, J. Dı́az, V. H. Dı́az and J. -F. Martı́nez, ”Continuous
Delivery of Customized SaaS Edge Applications in Highly Distributed
IoT Systems,” in IEEE Internet of Things Journal, vol. 7, no. 10, pp.
10189-10199, Oct. 2020, doi: 10.1109/JIOT.2020.3009633.

[2] Khan, W., Ahmed, E., Hakak, S., Yaqoob, I. & Ahmed, A. Edge
computing: A survey. Future Generation Computer Systems. 97 pp. 219-
235 (2019)

[3] B. Reselman, “3 questions to answer when considering a multi-cluster
Kubernetes architecture,” RedHat, (accessed October 29, 2023).

[4] J. Dwyer, “Simplifying Multi-Cluster Kubernetes Management: A Guide
to Key Solutions and Strategies,” RedHat, (accessed October 29, 2023).

[5] Tran, T. A Systematic Literature Review on Secure IoT Data Sharing.
(2022)

[6] Rostami Mazrae, P., Mens, T., Golzadeh, M. & Decan, A. On the usage,
co-usage and migration of CI/CD tools: A qualitative analysis. Empirical
Software Engineering. 28, 52 (2023)

[7] Olsson, H. Challenges and strategies for undertaking continuous exper-
imentation to embedded systems: Industry and research perspectives.
Agile Processes In Software Engineering And Extreme Programming.
277 (2018)

[8] Ferry, N., Nguyen, P., Song, H., Novac, P., Lavirotte, S., Tigli, J. &
Solberg, A. GeneSIS: Continuous Orchestration and Deployment of
Smart IoT Systems. 2019 IEEE 43rd Annual Computer Software And
Applications Conference (COMPSAC). 1 pp. 870-875 (2019)

[9] Bringhenti, D., Sisto, R. & Valenza, F. Security automation for multi-
cluster orchestration in Kubernetes. 2023 IEEE 9th International Con-
ference On Network Softwarization (NetSoft). pp. 480-485 (2023)

[10] López-Viana, R., Dı́az, J. & Pérez, J. Continuous Deployment in
IoT Edge Computing : A GitOps implementation. 2022 17th Iberian
Conference On Information Systems And Technologies (CISTI). pp. 1-6
(2022)

[11] Marinova, S. & Leon-Garcia, A. Open-Source Network Slice Orches-
tration for B5G/6G: Assurance Use Case. 2023 International Balkan
Conference On Communications And Networking (BalkanCom). pp. 1-6
(2023)

[12] “Kpt Official Docs,” Kpt, https://kpt.dev/ (accessed October 30, 2023).

539

