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Abstract—Minimum Steiner tree is frequently used as a means
for information retrieval, particularly for search with keyword.
While it tends to include high-centrality nodes, the information
obtained from such tree may already be accessible to the user,
which is not very useful. In this paper, we propose a Steiner
tree that avoids high-centrality nodes, in order to increase the
likelihood of information being unknown to the user, and thus
more useful, while maintaining a high degree of relevance to the
keywords. We examine various schemes to select high-centrality
nodes to avoid, and compare them in terms of the degree of
relevance with the keyword, probability of being unknown to the
user, and the pre-computation time. We employ degree centrality
and betweenness centrality as our metric for centrality. We find
that, our best-performing scheme, despite its simplicity, is able
to reduce more than 5% in terms of the number of betweenness
centrality nodes compared to the minimum Steiner tree, along
with its pre-computation time being about 20% times faster,
regardless of our choice of centrality metric.

Index Terms—graph, tree, Steiner tree

I. INTRODUCTION

In graph theory, trees are frequently used as a means to
analyze graphs. Steiner tree, which we are mainly concerned
with in this paper, is one of such trees to analyze graphs. Given
a node set Q ⊂ V from an undirected graph G = (V,E)
consisting of a set of nodes V and a set of edges E, a Steiner
tree is a tree containing all nodes contained in Q. Also, a
minimal Steiner tree is a Steiner tree with the smallest number
of edges. Nodes included in Q are called terminals, and non-
terminals nodes are called Steiner nodes. Unlike the minimum
spanning tree, which connects the given nodes without incorpo-
rating any additional nodes, the minimum Steiner tree has the
unique capability of accommodating additional nodes within
its structure.

Minimal Steiner trees are used in various applications, in-
cluding keyword retrieval, which is the primary focus in this
paper. In keyword retrieval, the user inputs multiple keywords
and the system presents information relevant to the keywords.
Specifically, the system finds the minimum Steiner tree on the
graph with the keyword as the terminal, and the information
is presented to the user based on the Steiner nodes of the
minimum Steiner tree.

Since the minimal Steiner tree has the smallest number
of edges, the leaves are always terminals, and the distance
between terminals on the Steiner tree is generally short. Thus,
the Steiner node is close to any terminal and has information
with a high degree of relevance to the keyword. In other words,
the number of edges of the Steiner tree indicates the degree of
relevance to the keyword of the information obtained from the
Steiner node, and the smaller the number of edges, the stronger
the association, and vice versa. We refer to the number of edges
of the Steiner tree as the size of the Steiner tree.

The centrality index is an index that indicates the importance
of nodes on the graph. The Steiner nodes of a minimal Steiner
tree tend to have high centrality. Nodes with high centrality
have connections with nodes closer to terminals than nodes
with low centrality, and can shorten the distance between
terminals on the Steiner tree. As such, the nodes with high
centrality tend to be selected as the Steiner nodes of the min-
imum Steiner tree. However, since nodes with high centrality
are likely to contain information that is already known to the
user, information obtained from the minimum Steiner tree is
also likely to be already known to the user. Thus, in order to
obtain information that is unknown to the user, yet related to
the keyword, a sufficiently minimal Steiner tree, with a small
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(a) An example of a shortest path tree.

(b) An example of a shortest path tree that avoids high-
centrality nodes.

Fig. 1: Comparison of shortest path trees in terms of avoiding
high-centrality nodes.

sum of centrality indices from the Steiner nodes, is required.
Let us consider an example. Suppose that a university and

on-campus clubs are connected on a social network service. A
user may perform a keyword search on the club of interest.
When the minimum Steiner tree is used, the user is likely
to be presented with information that is highly likely to be
already known to the user, e.g., the university itself. However,
with an approximate minimum Steiner tree whose centrality
indices are low, the lesser-known clubs that match the interest
are likely to be presented. It is less likely that the users are
more familiar with these clubs than the university itself, and
the information is thus more useful with higher entropy. As
illustrated in this example, by using an approximate minimum
Steiner tree with a small total centrality index, the probability
of presenting information related to the keywords yet unknown
to the user is increased.

SketchLS [7], a computation method for minimal Steiner
tree, pre-computes the shortest path from each node to a
set of randomly sampled nodes, and uses the shortest paths
to compute the minimal Steiner tree. This set of randomly
sampled nodes is called the seed nodes. The shortest path
is obtained from the shortest path tree starting from the seed
nodes, where the shortest path tree is obtained via breadth-first
search from the starting point. Figure 1a illustrates an example.
The arrows indicate the result of breadth-first search from the
seed node in orange. Each node can obtain the shortest path to
the seed nodes by following this arrow in a reversed order.

In order to obtain a Steiner tree with a small sum of centrality
indices, it is necessary to compute Steiner trees that avoid
high-centrality nodes. Also, when calculating a Steiner tree that
avoids high-central nodes based on SketchLS, it is necessary
to generate a shortest path tree that avoids high-centrality
nodes. However, not all nodes can obtain the shortest path
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Fig. 2: Degree centrality and betweenness centrality.
from the shortest path tree while avoiding high-centrality nodes.
Figure 1b illustrates such example. When a high-centrality node
is visited, its neighboring nodes are not searched, so the lower-
left and lower-right nodes cannot obtain the shortest path to
the seed nodes. However, in order to reduce the total centrality
index, it is necessary to obtain the shortest path that avoids
as many high-centrality nodes as possible. Yet, if we were to
find the shortest path tree for every possible combination of
high-centrality nodes to be avoided, the pre-computation time
will exponentially increase.

The purpose of our work is to find a combination of avoid-
able high-centrality nodes that can reduce the total centrality
index of the Steiner nodes, while suppressing the increase
in pre-computation time and keeping the size of the Steiner
tree close to the minimum. Since the centrality distribution is
concentrated regardless of the metric, as shown in Figure 2a and
Figure 2b, the combination is selected by gradually increasing
the number of high-centrality nodes to be avoided. We pro-
pose various simple schemes to increase the number of high-
centrality nodes to avoid. We evaluate the proposed schemes for
combinations from the perspectives of 1) the relevance of the
information obtained to the keywords, 2) the probability of the
information being unknown, 3) and the pre-computation time,
and examine how to select the optimal combination among the
proposed combination schemes. Our experiments show that it is
possible to find a combination scheme that reduces the number
of high-centrality nodes compared to the minimum Steiner tree,
while suppressing the increase in pre-computation time.

II. PRELIMINARIES

A. Centrality Metric
We use two commonly used centrality metrics [11], namely

degree centrality and betweenness centrality.
1) Degree Centrality: A degree of a node refers to the

number of nodes connected to that node. Degree centrality
(DC) is based on a premise that the more nodes are connected
to a node, the more important that node is. Degree centrality
of a node v is defined as following [14] [5]:

DC(v) =
degree(v)

N − 1
(1)

where degree(v) refers to the degree of the node v, and N
refers to the number of nodes in the graph.

585



2) Betweenness Centrality: Betweenness centrality is based
on the idea that the nodes can be considered more central if they
frequently appear on the shortest path between other nodes,
hence the name betweenness centrality. Betweenness centrality
of a node v is defined as following: [5] [1] [4]．

BC(v) =
∑

s∈V,s ̸=v

∑
t∈V,t̸=v

σst(v)

σst
(2)

where σst indicates the number of shortest paths between s and
t, and σst(v) refers to the number of shortest paths between s
and t that pass the node v.

B. Approximation of Minimal Steiner Tree

Minimum Steiner tree approximation methods prior to
SketchLS [7] include BANKS [2], Bidirectional [8], and STAR
[9]. However, since these methods require operations such
as breadth-first search from each terminal, the computational
complexity during execution is large. SketchLS determines the
search policy at pre-computation time, and performs the search
at runtime based on the policy. Thus, there are fewer redundant
searches compared to the previous methods above, and the
computation during execution is smaller.

During pre-computation, SketchLS finds the shortest path
from each node on the graph to each set of seed nodes,
and each node stores an array of the shortest paths obtained
from pre-computation. This array of shortest paths is called
Sketch [3] [6]. During runtime, it reads Sketch from a specified
terminal and runs the SketchLS algorithm on Sketch to obtain
an approximate minimum Steiner tree.

There is also an enumeration method [10] that, for a given
terminal, computes and finds all the minimum Steiner trees that
exist on the graph. If we can find the sum of the centrality
indices of the Steiner nodes of all the minimum Steiner
trees, and identify the minimum Steiner tree whose sum is
the smallest using this enumeration method, the goal of this
research can be achieved. However, the enumeration of multiple
minimum Steiner trees is much more computationally intensive
than for a single minimum Steiner tree, and is thus impractical.

III. MODEL

A. SketchLS

1) Sketch: SketchLS generates a pre-computed set of short-
est paths called Sketch for each node in the graph. Sketch is
generated according to the following procedure.

1) Randomly sample the sets of seed nodes S1, S2, ..., Sm

whose sizes are 1, 2, ..., 2m−1 from the graph
2) For each set of seed nodes Si, generate a shortest path

tree SPTi starting from a node in Si

3) Obtain the shortest path spi(v) between each node v and
Si from the shortest path tree SPTi, and store it as an
array

Note that m = log |V |. The outcome of SketchLS is
Sketch(v)=[sp1(v), sp2(v), ..., spm(v)].

2) SketchLS Algorithm: SketchLS obtains an approximate
minimum Steiner tree by running the SketchLS algorithm
on the terminal set Q. It first reads the Sketch for each
terminal, which is treated as a tree rooted at the terminal
qi, and subsequently performs breadth-first search. Results are
then stored in the array BFSi. The following operations are
performed for each BFSi:

1) Fetch next element v of BFSi, and add it to array Fi

2) If v’s neighbor node n is contained in Fj(j ̸= i) and the
addition of the path path = (qi, ..., v, n, ..., qj) does not
form a cycle in tree T , add path to tree T

3) Remove BFSi from array BFS if there is no next
element of BFSi

4) If tree T contains all terminals, return tree T as the
Steiner tree and terminate

This is performed in a round-robin manner. In other words,
when the operation on the last element of BFS is finished, it
moves to the operation on the first element of BFS.

B. Approximation of Minimal Steiner Tree Avoiding High-
Centrality Nodes

1) Generation of Sketch Avoiding High-Centrality Nodes:
Note that our aim is to generate Sketches that avoid top
x% nodes with high-centrality. We thus need to determine a
combination of high-centrality nodes to be avoided. First, we
determine the sets of high-centrality nodes A0, A1, A2, ..., An

with increasing size. We then specify one set of high-centrality
nodes Aj . For the specified Aj , Sketchj that avoids the high-
centrality nodes up to the size of |Aj | is generated by the
following procedure:

1) Randomly sample the sets of seed nodes S1, S2, ..., Sm

with sizes 1, 2, ..., 2m−1 from the graph
2) For each set of seed nodes Si and for each set of high-

centrality nodes Al, find a shortest path tree SPTil

starting from nodes in Si while avoiding nodes in Al

3) The path pi(v) from each node v to each set of seed
nodes Si is determined by fetching the routes sequentially
from SPTi0 to SPTil. If the route cannot be obtained,
set the route most recently obtained as pi(v). If the route
can be obtained from SPTij , set the route as pi(v).

where A0 is the set of seed nodes with size 0, and SPTi0 is
the shortest path tree. The size of An is x% of the total number
of nodes. As a result, we end up obtaining Sketchj(v) =
[p1(v), p2(v), ..., pm(v)] that avoids up to |Aj | high-centrality
nodes at most. Also, we generate Sketch for each possible
number of nodes in the sets, i.e., Sketch0, Sketch1, ..., Sketchn.
We modify Dijkstra’s algorithm to obtain SPTil as described
in Algorithm1.

The array prev obtained by Algorithm1 records the previ-
ously visited node in the breadth-first search starting from the
source node set Si. By going back to the node visited before
the specified node, the shortest path to the source node set Si,
avoiding the set of high-centrality nodes Al, is obtained. In
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Algorithm 1 modified-Dijkstra

Require: G,Si, Al

Ensure: prev -the list storing previous nodes
1: n ← |V |
2: dist ← new vector(n)
3: prev ← new vector(n)
4: que ← new queue
5: for v ∈ V do
6: dist[v] ← INF
7: prev[v] ← -2
8: end for
9: for s ∈ Si do

10: dist[s] ← 0
11: prev[s] ← −1
12: add s to que
13: end for
14: while !que.empty do
15: from ← que.pop()
16: for to ← Neighbor(from) do
17: if dist[to] ̸= INF then
18: continue
19: end if
20: if to in Al then
21: continue
22: end if
23: dist[to] ← dist[from] + 1
24: prev[to] ← from
25: que.push(to)
26: end for
27: end while
28: return prev

other words, prev is SPTil. However, since we avoid the sets
of high-centrality nodes, there may be nodes that cannot be
reached from the source node set. Thus, we set pi(v) as the
shortest path that avoids the largest possible number of high-
centrality nodes under Al. In case no high-centrality nodes are
avoided, pi(v) is the shortest path.

2) Selecting Combination of High-Centrality Nodes to
Avoid: We examine 4 simple schemes to select the sets
of high-centrality nodes to be avoided with increasing size,
A0, A1, ..., An. Table I describes how each of the 4 schemes
increases the size of the combination, where x is a number
of nodes to avoid. The number of required shortest path trees
in the last column is based on the number of shortest path
trees required to generate the original Sketch. Since the pre-
computation time increases as the number of required shortest
path trees increases, it is the longest for increment and the
shortest for all or nothing.

Intuitively, the probability of obtaining the shortest path
while avoiding high-centrality nodes is the highest for incre-
ment, and the lowest for all or nothing. Let us consider a

TABLE I: Proposed combination schemes

scheme node selection # shortest-path trees
increment increment by 1 ×(x+ 2)

add add 10% of x ×11
multiply double the number (1 follows 0) ×(⌊log2 x⌋+ 3)

all or nothing 0 or x ×2

scenario shown in Figure 3. Suppose a shortest path from an
arbitrary node v to an arbitrary set of seed nodes Si cannot
be obtained when x high-centrality nodes are to be avoided,
but can be obtained if x− 1 high-centrality nodes are avoided.
In this case, using all or nothing, the shortest path avoiding 0
high-centrality nodes, i.e, the usual shortest route, is obtained,
while using increment, it is possible to obtain the shortest path
avoiding x−1 high-centrality nodes. Increment, however, does
not turn out to be the most effective scheme as will be shown
in our experiments.

IV. EXPERIMENTS

A. Setting

Extending a minimum Steiner tree computation method
SketchLS, we propose a computational method for approximate
minimum Steiner trees that avoids high-centrality nodes, and
further examine 4 basic schemes of selecting the combination
of high-centrality nodes to be avoided.

In order to investigate how to select combinations that are
likely to be unknown to the user, while maintaining a high
degree of relevance to the keywords of interest, we compare
the size of the Steiner tree based on the minimum Steiner tree
obtained by SketchLS against the sum of the centrality indices
of the Steiner nodes. In addition, in order to investigate how
to select a combination that minimizes the overhead in pre-
computation time, we also compare the size of the minimum
Steiner tree against the pre-computation time.

We used musae-facebook [15], which is a web graph that
connects Facebook pages that ”like” each other, and ego-
facebook [13], consisting of friends lists, both from Stanford
Large Network Dataset Collection [12]. musae-facebook con-
tains 22,470 nodes and 171,002 edges, while ego-facebook
contains 4,039 nodes and 88,234 edges. Both are undirected
graphs. We experiment with 1,000 sets of randomly sampled
terminals, and report the average values. We performed our
experiments in Ubuntu 20.04.3 LTS with Intel(R) Xeon(R)
CPU E5-2643 v2 @ 3.50GHz, with 94GiB RAM.

Let us first consider the ratio of the sum of the centrality
indices of the Steiner nodes with respect to the size of the
Steiner tree as the number of terminals changes. We initially
varied the number of terminals ranging from 3 to 7. From
Figure 4a and Figure 4b, it can be seen that, regardless of
whether we avoid the high-centrality nodes in terms of the
degree centrality or betweenness centrality, the overall trend of
the ratio of the sum of the centrality indices decreasing is not
significantly affected by the number of terminals. We thus fix
the number of terminals to 5 in our subsequent evaluations.
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Fig. 3: An example of obtaining the shortest path avoiding x− 1 high-centrality nodes
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(a) Comparison of terminals when avoiding high-centrality
nodes based on degree centrality.
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(b) Comparison of terminals when avoiding high-centrality
nodes based on betweenness centrality.

Fig. 4: Comparison of terminals.

B. Results
We plot our results in Figure 5a and Figure 5b. Vertical

axes indicate the sum of degree centrality indices (left), and
the begween centrality indices (right). It can be seen that,
regardless of the centrality metric, the ratio of the sums with
higher degree centrality decreases and is not strongly dependent
on selection scheme. Yet, it can be seen that the ratio of total
betweenness centrality can be reduced by about 5% or more
with add and multiply than with increment and all or nothing.
This suggests that add and multiply may be more appropriate
ways to select a combination that increases the possibility of
the information obtained from the Steiner tree being unknown
to the user, while maintaining a high degree of relevance to the
keyword.

From Figure 6a and Figure 6b, it can be seen that, regardless
of whether we avoid the high-centrality nodes in terms of the
degree centrality or betweenness centrality, the pre-computation
time gets longer in the order of increment, add, multiply, all or
nothing. Comparing add and multiply, which were superior in
terms of centrality, multiply is about 300ms shorter, or about
0.8 times faster.

In summary, of the selection schemes we examined, add
and multiply turn out to be reliable schemes for selecting a
combination that increases the probability of obtaining un-
known information from the Steiner tree, while maintaining

a high degree of relevance to the keyword. Also, multiply
demonstrated faster pre-computation time than add. Summing
up the results from different perspectives, including the degree
of relevance, the probability of obtaining unknown information,
and the pre-computation time, multiply turns out to be the
optimal choice out of the selection schemes examined in this
paper.

V. CONCLUSION

In this paper, in order to increase the probability of present-
ing unknown and thus more useful information to the user,
while maintaining a high degree of relevance to the keyword,
we proposed a computation method for Steiner trees, where
nodes with high centrality are avoided as much as possible.
We also examined different schemes to select combinations of
high-centrality nodes to be avoided, and evaluated them from
the viewpoints of the degree of relevance to the keywords, the
probability of being unknown, and the pre-computation time.
Of the proposed selection schemes, add and multiply reduced
the ratio of the total betweenness centrality of the Steiner nodes
by about 5% or more within the range of about 1.25 times the
size of the Steiner tree, demonstrating that they can select a
combination that increases the possibility of the information
obtained from the Steiner tree being unknown to the user, while
maintaining a high degree of relevance to the keyword.
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(a) Comparison of selection schemes based on degree cen-
trality.
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(b) Comparison of selection schemes based on betweenness
centrality.

Fig. 5: Comparison of selection schemes.
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