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Abstract—Nowadays, the increasing trend toward digitaliza-
tion has driven the extensive adoption of collaborative robotic
automation across industries, yet a significant limitation is the
robots’ adaptability to unexpected and dynamic environments.
This research introduces a Digital Twin (DT)-based Transfer
Learning (TL) approach that combines DTs and Machine Learn-
ing (ML) to enhance adaptability in collaborative robot systems.
The proposed system uses DT cyberspace for pre-training ML
algorithms and leverages TL to apply this knowledge to real-
world applications. This innovative approach efficiently trains
state-of-the-art ML models, delivering exceptional performance
while reducing the required time and data resources. The proof-
of-concept experiments, employing the proposed DT-based TL to
control soccer robots, demonstrate a remarkable 96% reduction
in training time while maintaining a high level of adaptability,
achieving a 70% goal accuracy rate in dynamic scenarios.

Index Terms—digital twin, collaborative robot system, machine
learning, transfer learning, proof of concept

I. INTRODUCTION

In recent years, the trend toward digitalization has increased
the integration of collaborative robotic automation across
various industries. Robotic automation adoption has proven
to bring significant benefits, such as increased productivity,
cost reduction, and improved product and service quality [1].
As a result, collaborative robots become increasingly popular,
enabling industries to optimize processes, achieve high levels
of productivity, and provide greater profits to meet the evolving
demands of our digitized world.

Despite the numerous benefits of the current collaborative
robot systems, there are still several notable limitations. One of
the most significant limitations is the robots’ limited ability to
adapt to unexpected and dynamic environments [2]. Although
collaborative robot systems can be programmed to perform
specific tasks with precision and consistency as they help each
other to achieve a wide range of complex objectives, they often
struggle to handle unanticipated situations that are out of the
programming scope. This results in robots instigating errors
or unexpected outcomes in their tasks, which further leads
to operational disruptions, productivity losses, and potential
accidents. This lack of adaptability presents a considerable
challenge when applying collaborative robot systems in real-
world scenarios. In many instances, human supervision and
intervention are needed to supplement the robots’ capabilities
and ensure the smooth operation of the system. This reliance
on human involvement not only introduces additional costs
and complexity but also discourages industries from realizing
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the full potential of collaborative robot systems in uncertain
scenarios [3].

To overcome this adaptability challenge and enable robots
to handle dynamic scenarios, this research aims to identify
effective approaches for enhancing the robots’ adaptability. In
pursuit of this objective, we propose a DT-based TL method.
By harnessing the power of DTs, we can leverage both the
physical environment and its cyber reflection for efficient
ML training. Our proposed DT-based TL framework can
effectively train complex ML models, achieving outstanding
performance while reducing the required training time and
data. To validate the effectiveness of our proposed learning
framework, we conduct a proof of concept using the soccer
robot scenario, which achieves up to 96% reduction of training
time while maintaining high-level adaptability with a remark-
able performance of 70% goal accuracy in the physical world.

II. ML-BASED COLLABORATIVE ROBOTS

ML-based collaborative robots have emerged as a notable
advancement, significantly elevating the adaptability of col-
laborative robots. Traditionally, robotic tasks heavily relied
on manual programming and inflexible algorithms. However,
the incorporation of ML, such as Imitation Learning (IL) and
Reinforcement Learning (RL), disrupts conventional robotic
approaches. The IL enables robots to imitate complex expert
behavior, facilitating rapid skill acquisition for proficient task
execution [4]. Meanwhile, the RL allows robots to continu-
ously optimize actions in response to changing environments
by maximizing cumulative rewards [5]. Integration of these
ML techniques with collaborative robots leads to significant
benefits, as demonstrated by [6]-[8], which not only enhances
the robots’ robustness and adaptability but also elevates the
overall performance of collaborative robot systems.

However, the training of adaptive ML algorithms for collab-
orative robots requires a substantial volume of training data,
which can be impractical to obtain in the real world. To address
these challenges, two primary approaches have been developed
as noteworthy solutions: simulation-based ML and TL.

Simulation-based ML approaches leverage simulated envi-
ronments to generate the training data. Simulations allow for
controlled and repeatable training scenarios, making it feasible
to accumulate large datasets needed for ML model training.
However, a notable drawback of this approach is the inevitable
performance drop when transitioning from virtual simulations
to real-world environments, as emphasized by [7] and [9].
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On the other hand, TL is emerging as a promising technique
in the field of robotics, as evidenced by [10]. This approach
involves the transfer of knowledge acquired by one robot
to another, resulting in improved performance for the newly
trained robot. TL also offers a significant reduction in the
time required for training [11]. By leveraging pre-existing
knowledge and models, collaborative robots can adapt more
rapidly to new tasks and environments, effectively reducing
the learning curve. However, TL typically relies on pre-trained
models from a source task, which may not always be readily
available or applicable to all scenarios, and it requires a certain
degree of similarity between the source and target tasks for
effective knowledge transfer [12].

Recently, DT technology has gathered widespread attention,
particularly in the industrial and manufacturing sectors. By
establishing a connection between the physical and digital
realms, the DT framework enables the seamless exchange of
cyber-physical information, empowering informed decision-
making and operational optimization [13], [14]. Additionally,
DTs provide a platform for innovative experimentation, allow-
ing organizations to explore ideas and assess improvements
without affecting their physical systems. With access to cyber-
physical data and experimental capabilities, DTs hold potential
for applications in ML [15], [16]. In contrast to conventional
simulation-based ML, DT offers not only an accurately re-
flected simulation platform but also the integration of real-
world data to model training. Moreover, the DT can easily
complement TL by transferring the accumulated knowledge
from simulations to real-world experiences. Despite DT’s
great potential, it is rare to see practical implementations or
demonstrations of DT-based learning systems in state-of-the-
art studies. To provide our contributions, we develop a DT-
based TL framework and conduct comprehensive proofs of
concept to showcase its use cases and performance. Section
III reveals more details about our proposed framework.

III. DIGITAL TWIN-BASED TRANSFER LEARNING
A. Concept

In this section, we present a DT-based TL approach de-
signed for the optimization of collaborative robot systems.
Leveraging the concept of a DT, we harness the power
of virtual environments within cyberspace to pre-train ML
algorithms, subsequently employing TL to transpose this ac-
quired knowledge to real-world applications. This innovative
approach demonstrates the capability to efficiently train state-
of-the-art ML models, yielding exceptional performance while
demanding reduced temporal and data resources within real-
world operational settings.

B. General System Architecture

The general system architecture of the proposed DT-based
TL method is illustrated in Fig. 1. Initially, ML is trained
within a DT environment using simulated data. Upon complet-
ing this training, the model is stored within a central control
center, serving as a centralized command node for overseeing
and controlling all robots. During the deployment phase, the

- ) > Model Unpredictable
Digital Twin ®Training variable
pee%
®Training SCA'Q i
result GG/O Adapiing
&
Control Feedback
Robot
Control Center ©) Systems

Machine learning Sensor Input

model

Fig. 1: The architecture of the DT-based TL method.

model efficiently processes sensor inputs from each robot
and sends optimal control feedback tailored to the current
conditions and system’s requirements.

However, a model solely trained within the DT cyberspace
may not seamlessly transition to real-world applications due to
the inherent gap between simulated and actual environments.
To overcome this, following the initial deployment, we collect
real-world data that accurately reflects the true operating con-
ditions and complexities of the physical space to the DT. This
real-world data is then used for fine-tuning the model through
TL, resulting in an enhanced version better suited for real-
world situations. Once the model has undergone refinement,
it is redeployed to control the robot system, enabling more
effective adaption and high performance in real-world settings.

C. Transfer Learning Flow

Our DT-based TL approach integrates TL by incorporating
elements from both IL and RL. The training process begins
with IL in cyberspace by imitating behaviors that are observed
from the human expert demonstration. As the model gains pro-
ficiency, it transitions into RL phase, where it explores actions
and strategies independently, learns from the outcomes, and
changes its behavior based on the feedback rewards it receives.
Subsequently, the model is transitioned into the physical space,
where it undergoes a further refinement process by leveraging
real-world environmental information from the sensor data,
allowing the model to adapt and enhance its performance
by actively interacting with the physical environment. This
multifaceted knowledge integration ensures that the model
combines insights and expertise from human experts, the
virtual environment, and the physical environment, resulting
in a robust and adaptable collaborative robot system that
performs exceptionally well in real-world applications.

IV. PROOF OF CONCEPT
A. Scenario

To validate the effectiveness of the proposed system archi-
tecture, this research conducts a proof of concept using the
soccer robot scenario.

The proof-of-concept scenario is designed where multiple
robots collaborate to score a goal, as shown in Fig. 2. The
implementation involves using a DT-based TL method to train
an ML model to control the soccer robots effectively. In
this scenario, the soccer ball acts as a semi-uncontrollable
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Fig. 2: Proof of concept using soccer robots.

variable, where the robots can detect its position but are
unaware of its precise movements after interacting with it.
This approach allows the robots to adapt and respond to
unpredictable movements of the soccer ball, ultimately leading
to successful goal scoring.

The proof of concept using soccer robots consists of three
main parts: 1) Single robot shoots from a stationary ball, which
exhibits the robot system’s ability to control and accurately
shoot the ball; 2) Single robot shoots from a moving ball,
which demonstrates the robot system’s quick reactions and
adaptability. 3) Multiple robots pass and shoot the ball, which
showcases the robot system’s ability to function as a team,
collaborating together to complete the task. These proof-of-
concept demonstrations highlight the efficiency of the pro-
posed DT-based TL for collaborative robot systems.

B. Implementation

a) Implementation in cyberspace: In the DT implemen-
tation for soccer robots, the Robot Operating System (ROS)
[17] is employed as the middleware for controlling the robot
system, while Gazebo [18] serves as the robot simulator to
construct a cyberspace of the DT. As depicted in Fig. 3,
the simulation environment was composed of well-constructed
models representing the experimental field, soccer robot, soc-
cer goal, soccer ball, and 3D LiDAR sensor.

The soccer robot model in Fig. 3b represents a specific
type of robot called “Kobuki robot” used in this research.
The Kobuki robot is a popular mobile base platform, often
used in research and educational settings [19]. Equipped with
various sensors and actuators, the Kobuki robot exhibits the
necessary mobility and manipulation capabilities for soccer-
related tasks. To enhance its perception abilities, the Kobuki
robot is equipped with a 2D LiDAR sensor and a camera. The
2D LiDAR sensor allows the robot to obtain a 360-degree
view of its surroundings, while the camera provides visual
information for object recognition and tracking. To enable
the Kobuki robot to effectively interact with the soccer ball,
modifications were made to its front end. A specially designed
shooting pad was added to ensure a flat contact surface with
the soccer ball during shooting actions. This modification
allows the robot to apply force on the ball accurately and

(a) Experiment field

(d) Soccer ball

(b) Soccer robot (c) Soccer goal (e) 3D LiDAR

Fig. 3: DT models of the game field and soccer robots.

efficiently, simulating kicking motions performed by human
soccer players.

The 3D LiDAR sensor, as shown in Fig. 3e, serves as an
external sensor providing essential surrounding information for
the robot. This sensor operates by scanning its environment,
capturing spatial details in a 360-degree horizontal and vertical
field of view. This capability allows the soccer robots to
effectively sense the positions and shapes of various objects,
including the soccer ball. The position localization algorithm
is implemented by Point Cloud Library (PCL) [20], which
leverages Euclidean clustering [21], sphere fitting, and ball
tracking techniques. This ensures precise localization of the
soccer ball within the environment and is adapted from a
specialized ball detection algorithm proposed by [22].

Fig. 4 illustrates the ML model training implementation
system. This system is composed of three main components:
the dynamic environment, the ROS-based DT bridge, and the
training algorithm.

OpenAl Gym [23], a library of environments for RL train-
ing, is selected for the ML dynamic environment, providing
a standardized interface for the ML algorithm to interact with
environments. However, since OpenAl Gym does not natively
support ROS, we incorporate OpenAI-ROS [24] serving as
a bridge to translate ROS topic information into the Ope-
nAl Gym environment, leveraging ROS’s advanced features
for robot control and communication while benefiting from
OpenAl Gym’s ML algorithm training capabilities.

For ML model training algorithm, we employ the Generative
Adversarial Imitation Learning (GAIL) algorithm for IL from
imitation package [25] and the Proximal Policy Optimization
(PPO) algorithm for RL from stable-baselines3 package [26]
to train the model. The GAIL [27] merges the Generative Ad-
versarial Networks (GANs) [28] with IL, overcoming the need
for high-quality demonstration data by training a generator
network to produce realistic imitation trajectories and a dis-
criminator network to differentiate real expert demonstrations
from generated ones. The GAIL is effective with limited expert
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Fig. 4: Implementation of DT-based TL platform.

data, making it a valuable approach for real-world IL. On the
other hand, the PPO [29] is a state-of-the-art RL algorithm
ideal for training in complex environments. The PPO maintains
policy updates with proximal constraints, ensuring stability
and reliability, making it a popular RL algorithm choice for
real-world decision-making problems.

Firstly, the model policy 7 is defined by a Multi-Layer
Perceptron (MLP) with 2 fully connected hidden layers, each
with 64 perceptrons per layer. As illustrated in Fig. 4, this
policy takes the environment observation s as inputs and
generates output actions a which can be written as 7(als, 6),
where 6 represents the model parameters.

The model is initially trained with the GAIL algorithm to
imitate the expert behavior. In the GAIL algorithm, the genera-
tor network is defined as G (), which is the previously defined
ML model policy m(als,8), and the discriminator network is
represented as D(¢), where ¢ are the discriminator network’s
parameters. The discriminator’s role is to differentiate between
the agent’s generated trajectories and those of an expert. The
objective of the GAIL algorithm is to encourage the generator
to produce trajectories that are indistinguishable from those
of the expert, as determined by the discriminator. This can
be achieved by minimizing the discriminator’s loss function
(Eq. 1) and maximizing the generator’s rewards (Eq. 3). The
discriminator’s loss function can be expressed as follows:

L(¢) = Eng [log(D(11))] = Ex log(1 = D(7))], (1)

where E is the expectation operator, 7; represents a trajectory
which is a set of states and actions (s,a) at time step ¢,
ma is the generator policy, and 7g is the expert policy. In
each training step, D(¢) updates its parameters based on the
gradients of (1), then classifies the trajectory. The classification
results from the discriminator, denoted as D(7;) are then
employed in the rewards function, which is defined as:

R, = —log(1 - D(ry)). @)
These rewards are then used to update G(6) using the PPO
algorithm.

After GAIL training is completed, the knowledge acquired
from the IL can be transferred to the RL phase. The objective
of RL is to maximize the expected cumulative reward over a
trajectory, which can be expressed as:

T
>R
t=0

J(6) =E : 3)

where 0 represents the policy parameters, ¢ is the time step,
T is the length of the trajectory, and R; is the reward at time

step ¢.

This is achieved through the PPO, which optimizes the pol-
icy by maximizing the surrogate objective within the proximal
clipped region defined as follows:

L) =E [min (rt(ﬁ)/it,clip (r(0),1 —e,1+¢) At)} ,
“4)
where r;(6) represents the probability ratio of taking an action
in the new policy over the old policy, which is denoted
by 7:(0) = % , A, is the advantage function that
quantifies how much better a particular action is compared to
the average action at a given state, and € is a hyperparameter
controlling the extent of the policy update. The first term
rt(G)At corresponds to the conventional Trust Region Policy
Optimization (TRPO) method, while the second term limits
the change to be within the proximal region defined by e.
From (4), PPO updates the model policy in each rollout
with the following optimization:

Tnew(als, 0) = arg max (L(9)) . ®)

During this RL phase, the model interacts with the environ-
ment, aiming to maximize cumulative rewards based on a task-
specific reward function defined by the environment itself.

b) Implementation in physical environment: Moving to
physical environment, as depicted in Fig. 5, our created cy-
berspace closely mirrors the actual physical space of the soccer
robots proof of concept. The physical space also consists of
the soccer robots, a soccer goal, a soccer ball, and a 3D LiDAR
Sensor.

The soccer robot system relies on the ROS TCP/IP pro-
tocols for multi-agent communications, ensuring standardized
data sharing to facilitate effective coordination. However, the
protocol’s reliability can lead to latency when handling large
messages. To overcome this challenge, the system adopts
an edge computing approach. Specifically, the 3D LiDAR
sensor is connected to an edge computer, enabling efficient
ball detection. Meanwhile, the soccer robots independently
process collision data from their 2D LiDAR sensors, offering
immediate feedback for real-time decision-making. By dis-
tributing computation and transmitting of only essential input
data to the control center, the system reduces the transmission
message size, resulting in low-latency communication. These
optimizations significantly enhance system responsiveness and
performance during the soccer robots’ proof of concept.

During the deployment phase, the system initiates by load-
ing a pre-trained ML model from DT’s cyberspace into the
control center. It then utilizes input observations from the
robots and external sensors to generate control feedback for
robot management until the conclusion of an episode.

Lastly, in the model fine-tuning phase in the physical space,
the system follows a similar workflow, but it also incorporates
the use of the PPO RL algorithm to refine the ML model
with real data from the physical environment. Fine-tuning ML
models with real data facilitates the transfer of knowledge
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from cyberspace to physical space. This adaptation enables
models to adjust to the complexities and variations of the real
environment, bridging the gap between simulated and real-
world scenarios, ultimately ensuring the superior performance
in the physical world.

C. Results

In this section, we discuss the results of the soccer robots’
proof of concept. Each proof-of-concept scenario is assessed
based on the training parameters and their goal accuracy
performance at each stage of training, including GAIL and
PPO in cyberspace, as well as the deployment and fine-tuning
in the physical space.

Table I provides insights into the training results in vir-
tual cyberspace. Notably, as the complexity of the scenarios
increases, there is an observable escalation in training re-
quirements, including the amount of expert data and training
time, along with a decrease in goal accuracy. Furthermore,
the consistent improvement in accuracy through the transition
from GAIL to PPO is also noteworthy. For instance, in the
“multiple robots passing and shooting” scenario, the goal
accuracy increases significantly from 33% with GAIL to 62%
with PPO. This emphasizes the added value of TL from IL to
RL, enhancing both model accuracy and robustness within a
virtual environment.

Table II provides comprehensive results of the physical
space deployment and fine-tuning of “single robot shooting
from stationary ball” and “single robot shooting from moving
ball” scenarios. Notably, the latter scenario presents higher
complexity, as evidenced by the initial deployment’s lower
accuracy, with figures of 70% and 40%. However, significant
improvement is achieved through fine-tuning with real-world
data, resulting in goal accuracy of 95% and 70% for the
respective scenarios.

Based on the results obtained from both the cyberspace
(Table I) and physical space (Table II), the scenario of “single
robot shooting from a moving ball” has been selected as the
representative scenario. We have created Fig. 6 to provide a

TABLE I: Model training results in cyberspace.

Single robot
shooting from
stationary ball

Single robot
shooting from
moving ball

Multiple robots
passing and
shooting

Expert data: 20 EP

Expert data: 20 EP

Expert data: 30 EP

Goal accuracy: 98%

Goal accuracy: 93%

ﬁ Total timesteps: 100k | Total timesteps: 200k | Total timesteps: 300k
O | Training time: 10 hr | Training time: 24 hr | Training time: 36 hr

Goal accuracy: 86% | Goal accuracy: 82% | Goal accuracy: 33%
o Total timesteps: 50k | Total timesteps: 125k | Total timesteps: 200k
& | Training time: 5 hr | Training time: 15 hr | Training time: 24 hr

Goal accuracy: 62%

TABLE II: Deployment results in physical space using pre-
trained and fine-tuned model.

Single robot shooting
from stationary ball

Deployment: 20 EP

Single robot shooting
from moving ball

Deployment: 20 EP

Pre-trained

model Goal accuracy: 70% Goal accuracy: 40%
Fine-tuning timesteps: 4k Fine-tuning timesteps: 8k
Fine-tuned Fine-tuning time: 2.5 hr Fine-tuning time: 4 hr
model Deployment: 20 EP Deployment: 20 EP

Goal accuracy: 95% Goal accuracy: 70%

comprehensive analysis of model accuracy and training time
in our experiment.

In Fig. 6a, the model achieved an impressive 93% goal
accuracy during cyberspace training. However, upon deploying
the same pre-trained model in the physical space, the goal
accuracy decreases to 40%. This initial decrease in accuracy
highlights the challenges of transitioning from simulation to
reality. Nevertheless, fine-tuning with real data significantly
improved the model, achieving 70% goal accuracy in the
second physical deployment. This emphasizes the importance
of using real-world data to bridge the cyber-physical perfor-
mance gap, demonstrating the significance of our DT-based
TL approach for successful deployment.

Furthermore, in Fig. 6b, the conventional RL method re-
quires a model training time of up to 100 hours. In contrast,
our approach only requires 4 hours of training time in the
physical space. This demonstrates the remarkable effectiveness
of our DT-based TL approach in reducing the training time by
up to 96%. This significant reduction in training time not only
enhances the efficiency of the model development process but
also showcases the advantage of leveraging DT training and
real data fine-tuning to achieve optimal performance in real-
world environments.

In summary, our proof of concept showcases the potential
of the DT-based TL approach for enhancing collaborative
robot systems in practical applications. While initial accuracy
drops when transitioning from cyberspace to the real world,
fine-tuning with real data significantly improves performance.
Moreover, our DT-based TL approach reduces training time
by 96%, highlighting its efficiency and effectiveness.
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phases when migrating from cyberspace to physical space.

V. CONCLUSION

In conclusion, this research has successfully harnessed the
power of DT and ML technologies to develop a DT-based TL
approach for collaborative robot systems that demonstrated im-
pressive performance and adaptability while drastically reduc-
ing training requirements. The proof of concept exemplified
through the soccer robot scenario showcased the DT-based
TL effectiveness in both cyber and physical environments,
particularly in achieving high goal accuracy during final
real-world deployment. The unique approach of knowledge
transfer from the cyberspace to the physical space resulted
in a remarkable 96% reduction in training time, presenting
a clear advantage over the conventional methods. In fact,
this DT-based TL approach offers significant potential for
a wide range of applications beyond soccer robots, such as
industrial automation, healthcare, and logistics, paving the way
for efficient, customized collaborative robot systems to tackle
real-world challenges.
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