
An Efficient Content Retrieval and Content
Placement Approach for Named Data Networks

Matta Krishna Kumari
CSE Group
IIIT Sri City

Tirupati, India
krishnakumari.m@iiits.in

Nikhil Tripathi
CSE Group
IIIT Sri City

Tirupati, India
nikhil.t@iiits.in

Abstract—Named Data Network (NDN) is the future-
generation Internet architecture proposed to address the issues in
the current Internet architecture (TCP/IP) such as high content
access latency, single point of failure, etc. NDN supports in-
network caching that significantly enhances the network per-
formance and facilitates scalable content distribution. However,
the state-of-the-art in-network caching approaches suffer from
drawbacks such as high lookup repetition overhead, poor cache
utilization, and high content redundancy. To overcome these is-
sues, in this paper, we propose a new content retrieval and content
placement approach for NDN. The proposed approach reduces
the lookup repetition overhead by minimizing the number of
router consultations required for content retrieval. Moreover,
the proposed approach improves cache utilization and reduces
content redundancy by optimally placing the content on the most
suitable router. The experimental results show that this approach
improves the overall performance of the NDN architecture in
terms of both content access latency and Cache Hit Ratio (CHR).
We also compare the performance of the proposed approach with
state-of-the-art approaches in a real-world topology and show
that it outperforms the previously known approaches.

Index Terms—NDN, ICN, future Internet architecture, in-
network caching

I. INTRODUCTION

THE number of Internet users has grown significantly in
recent years due to emerging domains such as the Internet

of Things (IoT), vehicular networks, etc [21]. This advance-
ment exceeded the capabilities of the Internet as the underlying
TCP/IP architecture is designed for a limited number of
hosts [1]. Moreover, the current architecture is a host-centric
approach that leads to problems such as higher bandwidth
consumption, content access latency, single point of failure,
etc [2]. To address these challenges, researchers introduced
a next-generation Internet Architecture called Named Data
Network (NDN) [2]. The working of this architecture is based
on the fact that the users are interested in accessing the
data with minimal latency without bothering about the data
source. The prime advantage of NDN over current Internet
architecture is its ability for in-networking caching [3]. This
caching approach allows intermediate routers to store content
in their local caches called Content Store (CS). This greatly
improves network performance by reducing content access
delay and optimizing bandwidth utilization. Furthermore, the

replication of content in caches eliminates the vulnerability to
single points of failure.

The performance of NDN architecture is primarily based
on three strategies: content retrieval, content placement, and
content replacement. The content retrieval strategies involve
fetching content from either a router’s CS or the content
producer itself. The content placement strategies focus on
placing the content on the CS of the most appropriate routers
to maximize the Cache Hit Ratio (CHR). On the other hand,
the content replacement strategies involve removing content
from the cache once it is full. Traditional content replace-
ment methods like LFU, LRU, and FIFO are known to give
promising results within the NDN context. However, refining
the content retrieval and content placement strategies for NDN
is still a key concern for the researchers.

In the past few years, researchers have come up with new
approaches for content retrieval and content placement in
NDN. However, the known approaches suffer from a few
common drawbacks such as high lookup repetition overhead,
poor cache utilization, high content redundancy, high content
access latency, and low CHR. To overcome these drawbacks, in
this paper, we propose an efficient content retrieval and content
placement approach that not only improves the CHR but also
reduces the content access latency. During content retrieval,
our strategy minimizes the number of router consultations to
reduce the lookup repetition overhead. On the other hand, for
content placement, it optimally selects an on-path router. We
test the performance of our proposed strategy in a real-world
topology and show that it achieves higher CHR and lower
content access latency as compared to the previously known
state-of-the-art approaches.

The rest of the paper is organized as follows. NDN back-
ground is discussed in Section II. We present the literature
review in Section III. We present our proposed caching strat-
egy in Section IV. We describe the experiments conducted to
test the detection performance of the proposed strategy and the
obtained results in Section V. Finally, the paper is concluded
in Section VI.

II. BACKGROUND

NDN is a content-centric architecture in the sense that it
uses data names for packet forwarding instead of IP addresses

606979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

[2]. Moreover, it uses a hierarchical naming convention to
track and route content [4]. The architecture contains three
types of entities - 1) consumers, 2) producers, and 3) routers.
The consumer initiates the communication by sending an
interest packet for accessing content. The producer creates the
content and replies back with data packets to the consumer
requesting the content. The routers are responsible for for-
warding the interest and data packets to up and downstream
interfaces, performing content retrieval, managing the content
placement, and executing the content replacement strategies.
The routers consist of three essential data structures [5] - 1)
ContentStore (CS), 2) Pending Interest Table (PIT),
and 3) Forwarding Information Base (FIB). The CS
is a limited storage space available at a router to accom-
plish the in-network caching. The CS stores the entry for
a received data packet in the format <content name:
data packet> [6]. The PIT stores an entry for each
unsatisfied interest packet in the format <content name:
requested interfaces> until a data packet correspond-
ing to the requested content is received or the timeout period
expires. Meanwhile, in case the router receives more interest
packets for the same content, the corresponding PIT entry
is updated by appending the interfaces on which the interest
packets are received [6]. The FIB stores the entries required
to forward interest packets to the next upstream router towards
the producer. The entries in FIB are in the format <content
name: upstream interface> [6].

III. LITERATURE REVIEW

The in-network caching strategies in NDN can be divided
into two broad categories - On-path and Off-path [6]. The on-
path is the default caching strategy in NDN [7]. According to
this strategy, content retrieval and its caching are done only
on those routers that fall along the shortest path from the
consumer to the producer. Placing the content on an on-path
router has several advantages over off-path placement such as
easier implementation, no single point of failure issues, less
communication and computational overhead, etc. Thus, in this
section, we restrict our discussion to the caching strategies that
involve placing the content on the on-path routers only.

Leave Copy Everywhere (LCE) [8] is a classical on-path
caching strategy. This strategy suggests caching the content
on all on-path routers. However, this leads to poor cache
utilization due to significant content redundancy. To address
this issue, several works in the literature discuss different
improvements over LCE. These works can be divided into
different categories [20] which are as follows:

1) Distance-based: A few approaches suggest caching the
content in a router’s CS only if the router is in close proximity
to the consumer [10] or the producer [12]. However, these
approaches suffer from drawbacks such as poor cache-hit ratio
and/or higher content access latency [12], [13]. Authors in
[8] proposed a new variant called Move Copy Down (MCD).
MCD also suggests caching the content at the router directly
connected to the producer. In addition, with each repeated
interest packet, the content is also copied at a router one hop

down towards the consumer. The drawback of this approach
is that as the number of interest packets increases, the content
redundancy also increases. In [6], authors introduced the
Neighborhood Cooperative Caching (NCache). This approach
suggests content lookup in not only the on-path routers but
also the one-hop neighbours of the on-path routers. However,
a drawback of this approach is the increased overhead during
the content lookup process. This is because it checks a router
multiple times for the same content if that router is directly
connected to multiple on-path routers.

2) Probability-based: Probability-based caching strategies
involve storing content in a router’s CS based on the proba-
bility assigned to the CS. This probability is either predefined
[14] or computed dynamically [15], [16], [17], [18], [6],
and [19] based on the router’s distance from the producer
and the consumer. The strategies that involve assigning fixed
probability suffer from drawbacks such as improper cache
utilization [20]. Due to this limitation, most of the approaches
under this category assign dynamic probabilities to the routers.
The dynamic probability-based strategies are known to have
better cache utilization with less content access latency [21].
However, these approaches fail to reduce the content redun-
dancy and memory usage [9].

3) Centrality-based: Centrality-based on-path caching
strategies suggest caching the content at a router that is either
midway on the shortest path from producer to consumer
(CL4M [22]) or common for most of the shortest paths
existing between the producer and the consumer (CMBA [23]).
However, authors in [13] showed that finding such a router
in a large topology may result in significant overhead. Also,
content redundancy increases when routers share identical
centrality metrics [9].

4) Popularity-based: The popularity-based caching strate-
gies suggest caching the content based on its popularity
[24], [25], [26], [27], [28], [29], [30], [31], [32], [21], [13],
[33], [20]. The content popularity is calculated based on the
frequency of its retrieval. Content is cached at a router if its
popularity exceeds a threshold value [34], [35], [36], [37],
[38]. However, determining the popularity of each content
by the individual routers requires significant computational
resources [9], [32].

IV. PROPOSED APPROACH

Our proposed strategy operates in two stages - i) content
retrieval, and ii) content placement as discussed in the next
few subsections.

A. Content Retrieval

Algorithm 1 describes the content retrieval stage of our
proposed strategy. To retrieve content from a producer, the
consumer first computes the shortest path from itself to the
producer. The intermediate routers along this shortest path are
known as on-path routers [6]. After computing the shortest
path, the consumer sends interestpacket to the router directly
connected to it (edge router), EC , towards the producer (Step
1). On receiving interestpacket, EC performs a series of actions.

607

Algorithm 1 Content Retrieval Algorithm
Input:OnPathRouters,interestpacket

1: Consumer forwards interestpacket to EC
2: if interestpacket.content in CS of EC then
3: return interestpacket.content
4: else if interestpacket.content in RIT of EC then
5: RouterID ← RIT [interestpacket.content]
6: Path1 ← shortestPath(EC , RouterID)
7: Path2 ← shortestPath(EC , producer)
8: if len(Path1) ≤ len(Path2) then
9: V1 ← EC

10: V2 ←next on-path router towards RouterID
11: for (V1, V2) in Path1 do
12: Forward interestpacket to V2

13: if V2 == RIT .RouterID then
14: return interestpacket.content
15: end if
16: V1←V2

17: V2←next on-path router towards RouterID
18: end for
19: else
20: V1 ← EC ;V2 ←next on-path router towards producer
21: for (V1, V2) in Path2 do
22: OnPathRoutersDegree.append(V1, deg(V1))
23: if V1 == EP and V2 == producer then
24: Store OnPathRoutersDegree at V1

25: return interestpacket.content
26: end if
27: Forward interestpacket to V2

28: V1 ← V2

29: V2 ← next on-path router towards producer
30: end for
31: end if
32: else
33: Execute Steps 20 - 29
34: end if

It first checks if the content requested by a consumer is
available in its CS (Step 2). If the content is found, EC
serves it to the consumer (Step 3) using datapacket. However,
if the content is not found, EC consults its Pending Interest
Table (PIT) to check whether it is a duplicate or unique
interestpacket. If it is a duplicate interestpacket, EC discards
it and updates its PIT as discussed earlier in Section II. If it
is a unique interest packet, EC consults its Router Index Table
(RIT) to find the router responsible for caching the requested
content. RIT is an additional data structure maintained by the
EC , and contains two fields - ContentName and RouterID.
It maps the content to the router responsible for caching
that content. If RIT contains an entry for the requested
content, EC extracts the RouterID of the router responsible
for caching the requested content (Step 5). Subsequently,
EC computes the shortest path from itself to the RouterID
(Step 6) as well as to the producer (Step 7). If RouterID

is found to be closer, EC forwards the interestpacket to
it (Steps 9 - 18). However, if the producer is found to
be closer (Steps 20 - 29) or if the interestpacket.content
does not exist in the RIT (Step 33), EC crafts an interest
packet with one additional field OnPathRoutersDegree
and populates it with its router ID and its degree (Step 22).
Subsequently, EC forwards interestpacket to V2 (Step 27). On
receiving interestpacket, an intermediate router appends its ID
and its degree in the field OnPathRoutersDegree and
forwards it to the next on-path router towards the producer.
As soon as interestpacket arrives at the on-path router EP
directly connected to the producer, EP temporarily stores
the values present in OnPathRoutersDegree field of
interestpacket in a data structure in the format < Content :
OnPathRoutersDegree > (Step 24), and forwards inter-
estpacket to the producer. Subsequently, the producer serves
the content to the consumer (Step 25). It is to be noted that
the data packet traverses the same path that is traversed by the
corresponding interest packet.

B. Content Placement

We propose an efficient content placement approach based
on the number of connections of an on-path router. Our
content placement approach is described in Algorithm 2. In

Algorithm 2 Content Placement Algorithm
Input: OnPathRoutersDegree, datapacket, Path2

1: V1 ← Producer ; V2 ← EP
2: EP adds RouterID to the datapacket
3: for (V1, V2) in Path2 do
4: Forward datapacket to the V2

5: if V2 == RouterID then
6: Place content at V2

7: Broadcast ACK packet to all the routers
8: else
9: V1 ← V2 ; V2 ← next on-path Router to V1

10: end if
11: end for
12: for each EC in edge routers do
13: if ACK Received by EC then
14: if Action == Placed then
15: RIT [datapacket.content] = RouterID
16: else
17: del RIT [datapacket.content]
18: end if
19: end if
20: end for
21: EC forwards datapacket to the consumer

this approach, EP receives datapacket from the producer. First,
it finds the maximum degree router for datapacket.content
from its temporary data structure (as mentioned in Step 24
of Algorithm 1) and then adds the ID of that particular
router, RouterID, in the datapacket (Step 2). Subsequently,
datapacket is forwarded towards EC along the same path
(Step 4). Every router on the path compares its ID with

608

RouterID (Step 5). If both match, the content is placed in
that particular router (Step 6). After this, the router broadcasts
an ACK packet containing the details - datapacket.content,
RouterID, and Action to all the routers (Step 7). Here,
Action is a binary value that can be either Placed or
Evicted. On receiving this ACK packet, an edge router EC
updates its RIT according to the Action (Steps 13 - 17). If
Action is Placed, EC adds an entry in its RIT as shown in
(Step 15). However, if Action is Evicted, EC removes the
entry from RIT (Step 17). Finally, EC forwards datapacket
to the consumer that requested the content (Step 21).

V. EXPERIMENTS & RESULTS

In this section, we first discuss the setup used to assess
the performance of our proposed strategy. Subsequently, we
present the experimental results followed by the sensitivity
analysis of the proposed approach with respect to a few
parameters.

A. Experimental Setup

We conducted the experiments using the Icarus simulator
[10] configured on a computer running Ubuntu OS and having
a Core i5 processor with 16 GB of physical memory. To
compare our strategy with the similar approaches known in
the literature, we also implemented those approaches in the
simulator. Moreover, we used a real-world topology called
Internode network [39] to test the performance of different
caching approaches. The topology contains 66 nodes, out of
which 25 and 22 were assigned as consumers and producers,
respectively. The remaining 19 nodes were assigned as inter-
mediate routers. We used simulation parameters as shown in
Table I. In particular, we put 300,000 unique content objects in

TABLE I: Parameters and Values

Parameter Value
Number of content objects 300,000 objects
Number of content requests 600,000 objects
Content request order Round robin
Request rate 1 request per second
Link delay Internal: 2ms, External: 34ms
Network cache size C ∈ [0.5− 3.0]
Zipf Distribution parameter α ∈ [0.04− 0.4]
Cache replacement policy LRU
Content placement Uniform
Workload Trace-driven
Number of times experiments conducted 5

the network. These objects were requested by the consumers
for a total of 600,000 times. The content objects are uniformly
distributed among the producer nodes. Moreover, the content
requests sent by the consumers are governed by a Poisson
distribution-based method. The requests for objects followed
a round-robin pattern, ensuring that subsequent requests for
the initial content object occur only after all 300,000 con-
tent objects have reached the receiving node. The network
cache size C is expressed as a fraction of the entire content
population that is accessible within the network. The content
popularity has been implemented using the Zipf Mandelbrot
content distribution parameter α in the range of 0.04 to 0.4

[13]. α captures correlations within content requests, reflecting
that recently requested content is likely to be requested again
in the near future. Increasing α causes requests with a focus
on a smaller subset of content. Additionally, the internal link
delay, measured as the delay between receivers and routers, is
set to 2ms. The external link delay, which signifies the delay
from sources to routers, is specified as 34ms. These values are
utilized to compute latency in accordance with prior research
findings [11], [21]. It is to be noted that we used the standard
Least Recently Used (LRU) policy as the cache replacement
method for all experiments.

B. Results

We conducted a comparative analysis of our proposed
strategy and state-of-the-art caching strategies. Specifically,
we compared our approach with EDGE [12], Probcache [15],
LCE [8], MCD [8], CL4M [22], Ncache [11], and ProbNcache
[11] on the basis of two metrics - CHR and content access
latency. CHR measures the likelihood of a content request
being fulfilled by an intermediate router within the network.
Content access latency measures the entire duration from when
a user initiates a request until it receives the content as a
response.

Figure 1 shows that the proposed strategy consistently
achieved a higher CHR than state-of-the-art methods across
the complete range of C and α. This is because our proposed
approach strategically selects the highest degree router for
placing the content, ensuring widespread content accessibility
across the network. Similarly, figure 2 shows that our proposed
strategy achieves less content access latency as compared to
state-of-the-art methods. This is because the proposed strategy
needs to check only the router responsible for caching the
content. Additionally, the content is strategically positioned
on the highest degree router which makes the content highly
accessible in the network.

C. Sensitivity Analysis

1) Varying Cache Size (C): The cache size C plays an
important role in improving the overall cache performance.
If C increases, the overall in-network capacity increases due
to which more content can be cached. As a result, higher C
leads to better CHR. This is reflected in our experiments also,
as shown in Figure 3a. The CHR for our proposed strategy
increased as we increased the value of C from 0.5 to 3.0
percent. Moreover, the content access latency is also reduced
by increasing the cache size as shown in Figure 3b. This is
because expanding the storage capacity within the network
nodes offers the potential to accommodate additional content
without the need for content replacement. However, increasing
the cache storage also leads to an increase in the cost of the
router. Thus, it is essential to choose the cache size optimally
so as to achieve maximum CHR and minimum latency without
any significant increase in the cost of the caching routers.

2) Varying Content Distribution Parameter (α): The con-
tent distribution parameter, α, indicates that some contents are

609

0.5 1.0 1.5 2.0 2.5 3.0

Network Cache Size

0.2

0.4

0.6

0.8

1.0

C
H
R

EDGE

ProbCache

CL4M

LCE

MCD

Ncache

ProbNcache

Proposed

(a)

0.5 1.0 1.5 2.0 2.5 3.0

Network Cache Size

0.2

0.4

0.6

0.8

1.0

C
H
R

EDGE

ProbCache

CL4M

LCE

MCD

Ncache

ProbNcache

Proposed

(b)

Fig. 1: CHR for (a) α = 0.04, and (b) α = 0.4

0.5 1.0 1.5 2.0 2.5 3.0

Network Cache Size

20

30

40

50

60

70

80

90

100

L
a
t
e
n
c
y

EDGE

ProbCache

CL4M

LCE

MCD

Ncache

ProbNcache

Proposed

(a)

0.5 1.0 1.5 2.0 2.5 3.0

Network Cache Size

20

30

40

50

60

70

80

90

100

L
a
t
e
n
c
y

EDGE

ProbCache

CL4M

LCE

MCD

Ncache

ProbNcache

Proposed

(b)

Fig. 2: Latency for (a) α = 0.04, and (b) α = 0.4

C

a

c

h

e

s

i

z

e

0.5

1.0

1.5

2.0

2.5

3.0

A

l

p

h

a

0.04

0.25

0.4

0.3

0.4

0.5

0.6

0.7

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

C
a
c
h
e

H
i
t

R
a
t
i
o

(a) CHR

C

a

c

h

e

s

i

z

e

0.5

1.0

1.5

2.0

2.5

3.0

A

l

p

h

a

0.04

0.25

0.4

30

35

40

45

50

55

60

30

35

40

45

50

L
a
t
e
n
c
y

(b) Latency

Fig. 3: CHR and Latency for α = [0.04 - 0.4] and cache size
= [0.5 - 3.0]

more popular or frequently requested than others. This distri-
bution indicates that a small number of content is requested
more frequently than others, which leads to an increase in
the popularity of those contents. As a result, the chance of
the presence of those contents in a router’s cache increases
slightly. Thus, an increase in the value of α results in a
marginal increase in the CHR. This can be noticed in Figure
3a. Moreover, due to a higher α value, a consumer can
retrieve the content from an intermediate router itself instead
of retrieving it from the producer. This results in a marginal
lower content access latency as shown in Figure 3b.

VI. CONCLUSION

NDN is a next-generation Internet architecture proposed to
replace the current TCP/IP Internet architecture due to its
various shortcomings. One advantage of NDN over current
Internet architecture is its ability for in-network caching. How-
ever, the known content retrieval and placement techniques
suffer from various drawbacks such as high lookup repetition
overhead, poor cache utilization, and high content redundancy.
Through this paper, we made an attempt to improve the
overall performance of NDN architecture by proposing an
efficient content retrieval and content placement approach. Our
approach not only strategically selects the routers for content
retrieval, but also optimally decides to place the content in an
appropriate router. Our experiments showed that the proposed
approach could achieve better CHR and less content access

610

latency as compared to the previously known state-of-the-art
approaches.

REFERENCES

[1] Ahlgren, Bengt, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher,
and Borje Ohlman. ”A survey of information-centric networking.” IEEE
Communications Magazine 50, no. 7 (2012): 26-36.

[2] Benmoussa, Ahmed, Chaker Abdelaziz Kerrache, Nasreddine Lagraa,
Spyridon Mastorakis, Abderrahmane Lakas, and Abdou El Karim Tahari.
”Interest flooding attacks in named data networking: Survey of Existing
Solutions, Open Issues, Requirements, and Future Directions.” ACM
Computing Surveys 55, no. 7 (2022): 1-37.

[3] An, Ying, and Xi Luo. ”An in-network caching scheme based on energy
efficiency for content-centric networks.” IEEE Access 6 (2018): 20184-
20194.

[4] Afanasyev, Alexander, Xiaoke Jiang, Yingdi Yu, Jiewen Tan, Yumin
Xia, Allison Mankin, and Lixia Zhang. ”NDNS: A DNS-like name
service for NDN.” In 2017 26th International Conference on Computer
Communication and Networks (ICCCN), pp. 1-9. IEEE, 2017.

[5] Cao, Jianxun, Dan Pei, Xiaoping Zhang, Beichuan Zhang, and Youjian
Zhao. ”Fetching popular data from the nearest replica in NDN.” In
2016 25th International Conference on Computer Communication and
Networks (ICCCN), pp. 1-9. IEEE, 2016.

[6] Xylomenos, George, Christopher N. Ververidis, Vasilios A. Siris, Nikos
Fotiou, Christos Tsilopoulos, Xenofon Vasilakos, Konstantinos V. Kat-
saros, and George C. Polyzos. ”A survey of information-centric net-
working research.” IEEE communications surveys & tutorials 16, no. 2
(2013): 1024-1049.

[7] Jacobson, Van, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. ”Networking named
content.” In Proceedings of the 5th international conference on Emerging
networking experiments and technologies, pp. 1-12. ACM, 2009.

[8] Laoutaris, Nikolaos, Sofia Syntila, and Ioannis Stavrakakis. ”Meta algo-
rithms for hierarchical web caches.” In IEEE International Conference
on Performance, Computing, and Communications, 2004, pp. 445-452.
IEEE, 2004.

[9] Iqbal, Shahid Md Asif. ”Cache-MAB: A reinforcement learning-based
hybrid caching scheme in named data networks.” Future Generation
Computer Systems 147 (2023): 163-178.

[10] Saino, Lorenzo, Ioannis Psaras, and George Pavlou. ”Icarus: a caching
simulator for information centric networking (icn).” In SimuTools, vol.
7, pp. 66-75. ICST, 2014.

[11] Chaudhary, Pankaj, Neminath Hubballi, and Sameer G. Kulkarni.
”NCache: neighborhood cooperative caching in named data network-
ing.” In 2022 5th International Conference on Hot Information-Centric
Networking (HotICN), pp. 36-41. IEEE, 2022.

[12] Laoutaris, Nikolaos, Hao Che, and Ioannis Stavrakakis. ”The LCD
interconnection of LRU caches and its analysis.” Performance Evaluation
63, no. 7 (2006): 609-634.

[13] Reshadinezhad, Amir, Mohammad Reza Khayyambashi, and Naser
Movahedinia. ”An efficient adaptive cache management scheme for
named data networks.” Future Generation Computer Systems 148
(2023): 79-92.

[14] Naeem, M. A., and H. Suhaidi. ”A survey on probabilistic caching
mechanisms in content centric networking.” J. Adv. Res. Dyn. Control
Syst 10, no. 10 (2018): 1309-1321.

[15] Naeem, Muhammad Ali, Shahrudin Awang Nor, Suhaidi Hassan, and
Byung-Seo Kim. ”Performances of probabilistic caching strategies in
content centric networking.” IEEE access 6 (2018): 58807-58825.

[16] Psaras, Ioannis, Wei Koong Chai, and George Pavlou. ”Probabilistic
in-network caching for information-centric networks.” In Proceedings
of the second edition of the ICN workshop on Information-centric
networking, pp. 55-60. ACM, 2012.

[17] Ioannou, Andriana, and Stefan Weber. ”A survey of caching policies
and forwarding mechanisms in information-centric networking.” IEEE
Communications Surveys & Tutorials 18, no. 4 (2016): 2847-2886.

[18] Wu, Haibo, Jun Li, Jiang Zhi, Yongmao Ren, and Lingling Li. ”A hybrid
ICN caching strategy based on region division.” In Proceedings of the
15th International Conference on emerging Networking EXperiments
and Technologies, pp. 78-79.ACM, 2019.

[19] Wang, Yu, Mingwei Xu, and Zhen Feng. ”Hop-based probabilistic
caching for information-centric networks.” In 2013 IEEE Global Com-
munications Conference (GLOBECOM), pp. 2102-2107. IEEE, 2013.

[20] Meng, Yahui, Muhammad Ali Naeem, Rashid Ali, and Byung-Seo Kim.
”EHCP: An efficient hybrid content placement strategy in named data
network caching.” IEEE Access 7 (2019): 155601-155611.

[21] Naeem, Muhammad Ali, Tu N. Nguyen, Rashid Ali, Korhan Cengiz,
Yahui Meng, and Tahir Khurshaid. ”Hybrid cache management in IoT-
based named data networking.” IEEE Internet of Things Journal 9, no.
10 (2021): 7140-7150.

[22] Chai, Wei Koong, Diliang He, Ioannis Psaras, and George Pavlou.
”Cache “less for more” in information-centric networks.” In NET-
WORKING 2012: 11th International IFIP TC 6 Networking Conference,
Prague, Czech Republic, May 21-25, 2012, Proceedings, Part I 11, pp.
27-40. Springer Berlin Heidelberg, 2012.

[23] Lal, Kumari Nidhi, and Anoj Kumar. ”A centrality-measures based
caching scheme for content-centric networking (CCN).” Multimedia
Tools and Applications 77 (2018): 17625-17642.

[24] Naeem, Muhammad Ali, Muhammad Atif Ur Rehman, Rehmat Ul-
lah, and Byung-Seo Kim. ”A comparative performance analysis of
popularity-based caching strategies in named data networking.” IEEE
Access 8 (2020): 50057-50077.

[25] Ren, Jing, Wen Qi, Cedric Westphal, Jianping Wang, Kejie Lu, Shucheng
Liu, and Sheng Wang. ”Magic: A distributed max-gain in-network
caching strategy in information-centric networks.” In 2014 IEEE confer-
ence on computer communications workshops (INFOCOM WKSHPS),
pp. 470-475. IEEE, 2014.

[26] Yu, Meiju, and Ru Li. ”Dynamic popularity-based caching permission
strategy for named data networking.” In 2018 IEEE 22nd Interna-
tional Conference on Computer Supported Cooperative Work in Design
((CSCWD)), pp. 576-581. IEEE, 2018.

[27] Kumar, Sumit, and Rajeev Tiwari. ”Optimized content centric net-
working for future internet: dynamic popularity window based caching
scheme.” Computer Networks 179 (2020): 107434.

[28] Zhang, Ran, Jiang Liu, Renchao Xie, Tao Huang, F. Richard Yu, and
Yunjie Liu. ”Service-aware optimal caching placement for named data
networking.” Computer Networks 174 (2020): 107193.

[29] Naeem, Muhammad Ali, Shahrudin Awang Nor, Suhaidi Hassan, and
Byung-Seo Kim. ”Performances of probabilistic caching strategies in
content centric networking.” IEEE access 6 (2018): 58807-58825.

[30] Hou, Rui, Lang Zhang, Tingting Wu, Tengyue Mao, and Jiangtao Luo.
”Bloom-filter-based request node collaboration caching for named data
networking.” Cluster Computing 22 (2019): 6681-6692.

[31] Kalghoum, Anwar, and Leila Azouz Saidane. ”Fcr-ns: a novel caching
and forwarding strategy for named data networking based on software
defined networking.” Cluster Computing 22 (2019): 981-994.

[32] Herouala, Abdelkader Tayeb, Benameur Ziani, Chaker Abdelaziz Ker-
rache, Abdou el Karim Tahari, Nasreddine Lagraa, and Spyridon
Mastorakis. ”CaDaCa: a new caching strategy in NDN using data
categorization.” Multimedia Systems (2022): 1-16.

[33] Amadeo, Marica, Giuseppe Ruggeri, Claudia Campolo, Antonella Moli-
naro, and Giuseppe Mangiullo. ”Caching popular and fresh IoT contents
at the edge via named data networking.” In IEEE INFOCOM 2020-
IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS), pp. 610-615. IEEE, 2020.

[34] Bernardini, César, Thomas Silverston, and Olivier Festor. ”MPC:
Popularity-based caching strategy for content centric networks.” In 2013
IEEE international conference on communications (ICC), pp. 3619-
3623. IEEE, 2013.

[35] Ming, Zhongxing, Mingwei Xu, and Dan Wang. ”Age-based cooperative
caching in information-centric networking.” In 2014 23rd International
Conference on Computer Communication and Networks (ICCCN), pp.
1-8. IEEE, 2014.

[36] Naeem, Muhammad Ali, Shahrudin Awang Nor, Suhaidi Hassan, and
Byung-Seo Kim. ”Compound popular content caching strategy in named
data networking.” Electronics 8, no. 7 (2019): 771.

[37] Lee, Sung-Won, Dabin Kim, Young-Bae Ko, Jae-Hoon Kim, and
Myeong-Wuk Jang. ”Cache capacity-aware CCN: Selective caching and
cache-aware routing.” In 2013 IEEE Global Communications Confer-
ence (GLOBECOM), pp. 2114-2119. IEEE, 2013.

[38] Ong, Mau Dung, Min Chen, Tarik Taleb, Xiaofei Wang, and Victor CM
Leung. ”FGPC: Fine-grained popularity-based caching design for con-
tent centric networking.” In Proceedings of the 17th ACM international
conference on Modeling, analysis and simulation of wireless and mobile
systems, pp. 295-302.ACM, 2014.

[39] Topology-Zoo, http://www.topology-zoo.org/dataset.html, (accessed on
31-10-2023).

611

