979-8-3503-3094-6/24/$31.00 ©2024 IEEE

Logical Space Composition of IoT for a Scalable
and Adaptable Smart Environment

Hyeyoung An, Woojin Park, and Soochang Park
Department of Computer Engineering
Chungbuk National University
Cheongju, Republic of Korea
{elinyoung, woojin415, cewinter} @chungbuk.ac.kr

Abstract—The Internet of Things (IoT) represents the integra-
tion of smart environments seamlessly woven into the fabric of
our daily lives. However, the inherent characteristics of IoT, such
as its vast scale and heterogeneity, have posed challenges in the
development of practical and smarter applications, primarily due
to the lack of an architecture capable of effectively managing
large-scale IoT systems. In response to these challenges, this
paper introduces a Logical Space Subdivision (LSS) system. This
system modularly configures smart devices, taking into account
user requirements and adapting to spatiotemporal changes. These
modules are interconnected to establish logical spaces that can
be combined to represent more extensive physical spaces. The
paper delineates five fundamental design principles: modularity,
encapsulation, authorization, interoperability, and mobility. The
proposed system facilitates scalable and flexible service provi-
sioning within IoT infrastructures, enhancing the adaptability of
smart spaces to meet users’ evolving needs.

Index Terms—IoT, Modularity, Encapsulation, Logical space

I. INTRODUCTION

In recent decades, the advancements in computing and wire-
less communication technologies have significantly improved
our daily lives by providing a highly convenient channel for
information exchange, offering end-users efficient resource uti-
lization and intelligent services [1]. The interconnection of all
things paves the way for the Information and Communication
Technology (ICT) revolution known as the Internet of Things
(IoT), where numerous sensors, actuators, and mobile devices
are deployed at the network edge [1], [2]. IoT is a fusion of two
fundamental elements “Internet” and “Things.” In other words,
connected devices, called things, are embedded into our life
spaces for carrying out daily life activities and tasks in an easy
and natural way using information and intelligence, hidden in
the network connecting the things [3], [4]. Such a pervasive
vision of IoT might increase the value of the information
generated by a number of interconnections between people
and things and the transformation of the processed information
into knowledge for the benefit of mankind and society.

In accordance with a Statista Research Development report
from November 2019, it is anticipated that the global count
of interconnected IoT devices will soar to 75.44 billion by
the year 2025 [5]. This signifies the involvement of billions
of interconnected devices in intelligent services all around us.
An end user is able to receive/exploit various smart services

617

Euisin Lee
School of Information & Communication Engineering
Chungbuk National University
Cheongju, Republic of Korea
elsee @chungbuk.ac.kr

M Clean

M_Relax

M _Temp M_Meeting

Fig. 1. Hierarchy of logical space

that are provided by a wide variety/range of smart devices in
any place at any time. Smart device services need to change
dynamically to users’ spatiotemporal variations, as Fig. 1
illustrates. In other words, as you wake up in the morning
and get ready, users should be able to seamlessly interact
with smart devices, such as thermostats or heaters, placed in
specific domestic spaces like your bedroom and bathroom.
Similarly, when you have breakfast or watch the news, the
kitchen and living room should be connected to the relevant
smart devices, such as the TV, dishwasher, oven, etc. This does
not simply mean a change in space. Each space is composed
of different smart devices with heterogeneous properties, such
as the type, function, and management service provider of
the connected smart device [1], [2], [6]. Today, most service
providers are taking a Top-down approach, passively collecting
the necessary data from individual devices. Furthermore, each
individual device is limited by the monitoring tools provided
by the device vendor, which also makes it difficult to extract

ICOIN 2024

useful information [7]. Therefore, it prevents scalable and
flexible service provision and interoperation management over
broadly deployed IoT infrastructures.

To address the challenges and limitations associated with
the heterogeneity of large-scale IoT, including issues related
to flexibility, scalability, and interoperability, this paper in-
troduces a Logical Space Subdivision (LSS) system. In the
proposed system, smart devices within a user’s space are
modularly configured based on the user’s requirements, tak-
ing into account the user’s spatiotemporal changes. Modules
within the space are interconnected to form a single logical
space. Furthermore, these logical spaces can be combined with
other logical spaces, ultimately representing larger physical
spaces. As a result, our system can effectively manage large
and highly diverse IoT infrastructures. It does so with low
complexity in control and communication while ensuring high
interoperability among the various smart objects involved in
smart services.

In the following sections, we discuss the basic design
principles to achieve practical goals. In Section III, we explain
our proposed LLS System. In Section IV, we present the
performance evaluation results along with usage scenarios to
validate the proposed approach. The conclusion section of this
article highlights the main concept.

II. BASIC DESIGN PRINCIPLES

This section explains the basic design principles to achieve
the purpose of the proposed LSS system. The core vision is
that smart devices near the user are logically organized by
modularizing similar types, and these modules are combined
to form a single logical space. The logical spaces are combined
to form a larger logical space at the top. This bottom-up
approach allows for the dynamic arrangement of smart spaces.
The following subsections present the five design principles.

A. Modularity

This system identifies modularity as one of the key design
principles to establish independence among interconnected el-
ements. These elements are capable of connecting, interacting,
and exchanging data with each other. Modularity, therefore,
is defined as the principle that states related elements should
remain unaffected by additions, deletions, modifications, or
reconstructions. Unlike a tightly coupled system whereby each
component is designed to work specifically and exclusively
with other components, in the proposed system, things are
designed to be loosely coupled. To achieve modularity, it
predefines and standardizes interfaces for a general purpose
according to the category since things interact with others
only through interfaces. Owners or administrators could freely
add some new attributes and procedures to their own objects
but could not add them to interfaces for other objects. The
modularization of the proposed system can be seen in the
lower part of Fig. 1. As depicted in the figure, devices situated
within a room are organized into modules based on their
respective functionalities (M_Relax, M_Temp, and M_Clean).
Equipment can be modularized and configured independently

of one another, even when they are deployed in the same
logical space.

B. Encapsulation

Encapsulation can be used to hide attributes and procedures
from view outside of the object for security and privacy.
Logical space could prevent access from unauthorized users
by hiding all interfaces and adjust access levels for authorized
users by hiding partial interfaces according to user profiles. In
Fig. 1, the logical space labeled "Rooms” combines several
smaller logical spaces, including bedrooms and living rooms,
to form a larger logical space referred to as a “House.”
Additionally, the "House” is incorporated to build the logical
space of a "Town,” and these logical spaces are finally merged
to create the highest-level logical space, which is the “City.”

C. Authorization

Authorization can be managed in diverse ways by the
owner or administrator of things or spaces. In public facilities,
access can give authorization to all users for both things and
spaces, while in residential settings, only family members are
given access. Offices may have diverse authorization levels,
including temporary authorization for guests.

D. Interoperability

The proposed system combines smaller logical spaces
(SubLS) to create a larger entity known as the Superordinate
Logical Space (SuperLS). SuperLS provides comprehensive
information and functionalities, allowing users to interact with
various SubLS through SuperLS. For instance, consider an
apartment (SuperLS) containing multiple houses (SubLS).

In the event of a fire occurrence within a house, the
apartment can gather fire and smoke-related data, trigger fire
alarms within each house, guide users on evacuation routes,
and issue fire notifications. Conversely, if a fire incident arises
within a room of a house, a fire notification can be relayed
to the higher-level entity (where the SuperLS of Rooms is the
house and the SuperLS of House is the apartment or town).

E. Mobility

Human-centric mobility can be thought of as a shift within
a logical space. When a user moves from one logical space
to another, it involves the establishment of a new connection,
whether explicitly or implicitly, with a new space agent. To
ensure seamless and uninterrupted delivery of smart services,
the concept of concatenated tunneling can be considered.
This allows for the transfer of user profiles, controls, and
service profiles to the new agent, in addition to tracking the
user’s movement trajectories. For instance, when an individual
leaves the bedroom and heads to the bathroom for a shower,
this transition can be depicted as a move from the bedroom
(SubLS) to the bathroom (SubLS). The transmission of this
information can be facilitated through a higher-level logical
space, known as the House (SuperLS).

618

Logical block Functional block
LogicalLayer
[s stparaer
i i
il il i)
S B B T

f f fT f
DR WEF Cee ¢

InfraLayer

Modularity
Authorization

Fig. 2. LSS system architecture based Home

III. LSS SYSTEM

This section describes our proposed LSS system architecture
and the operational mechanism of the system.

A. System architecture

As depicted in Figure 2, the system architecture of LSS
comprises two primary components: the functional block and
the logical block. The LSS system is integrated into an IoT
infrastructure, encompassing smart devices, and is established
upon the foundation of the smart device layer (DeviceLayer).
The logical blocks can be broadly classified into three principal
segments: Infral.ayer, ModuleLayer, and LogicalLayer. These
logic blocks are closely linked to the functional blocks, which
are the basic design principles defined in Section II. Each
functional block is connected to the corresponding logical
block, providing users with comprehensive and sophisticated
information and enabling the expansion of services.

1) InfraLayer: The InfraLayer consists of two key com-
ponents, namely DeviceLayer, and AccessLayer, each serving
distinct roles in the operation of smart devices. The Device-
Layer is responsible for the discovery of devices, the manage-
ment of device-related information, and the authorization of
access control for their interfaces and properties. Each smart
device is capable of recognizing its associated agent connected
to the cloud system, reporting to the agent, and receiving
commands from it. The AccessLayer governs the connections
to agents of devices connected to the cloud system through an
authentication mechanism.

2) ModuleLayer: The ModuleLayer, on the other hand, of-
fers a method for logically modularizing the devices identified
in the InfralLayer based on user requirements. This logical
modularization decreases system complexity and minimizes
communication overhead. Instead of repeatedly searching for
nearby smart devices, users only interact with organized,
modular sets of related devices.

3) LogicalLayer: Within the LogicalLayer, the specific
location of the user is defined as a SubLayer, which is
further composed of multiple ModuleLayers. Additionally, the
combination of multiple SubLayers creates a SuperLayer.

B. Operations

The core functionality of the LSS System encompasses
logical proximity clustering, which logically organizes nearby

Algorithm 1 Logical proximity clustering
1: function MAKEMODULE(userI D, userLoc)
2: devices < getSmartDevices(logical_Space)
3 strModule <— Name of module
4 listSelModule = []
5 for device in devices do
6: if isAuthentication(userID, device) then
7
8
9

if device is selected OR essential device then
listSel Module.append(device)
: end if
10 end if
11: end for
12: NotifyChangedConfiguration()
13: end function

14: function MAKELOGICALSPACE(userlI D, user Loc, level)
15: listSpces = | |

// Configuration SubLayer
16: if level == LEVEL 1 then

17: if changeSubLayer() then

18: if isSubLayer(userLoc) then

19: if doModify() then

20: strSubLayer <— name of SubLayer
21: releaseLocSpace(nameOfSubLayer)
22: end if

23: end if

24: makeModule(userID, userLoc)

25: makeLogicalSpace(userID,userLoc, LEVEL_2)
26: else

27: return NULL

28: end if

29: else // Configuration SuperLayer

30: strSpace = getNameSuperlayer(userLoc, leve)l
31 spacel D = getIDSuperlayer(userLoc, level)
32: listSubLayer =

33: getSubLayerList(userID, spacelD)

34: for subLayer in listSubLayer do

35: if isAuthentication(userID, subLayer) then
36: if subLayer is selected then

37: listSpces.append(subLayer)

38: end if

39: end if

40: end for

41: end if

42: NotifyChangedConfiguration()
43: end function

smart devices based on the user’s current location and required
functionalities, as well as device and user access management.

1) Logical proximity clustering: Logical proximity clus-
tering is implemented through the modularization function,
which logically organizes nearby smart devices into one or
more modules based on the user’s requirements, and through
the logical space function, which combines one or more of
these modules to create a logical space. The pseudo-code of

619

the proposed logical proximity clustering method is shown in
Algorithm 1.

a) Make module: The makeModule function offers the
capability to logically group nearby available devices based on
the user’s location for modularization. This function takes the
user’s ID (userID) and location(userLoc) as inputs. It proceeds
to search for nearby smart devices using the getSmartDevice
function, utilizing the user’s location as a reference. The search
results are stored in the variable (devices). Subsequently, the
user defines the name of the module to be configured in
the string variable (strModule). Following this, the isAuthen-
tication function verifies the user’s authentication status for
each device in the device list. A device can only be added
to the module if the user is authenticated for that specific
device. Furthermore, if a module necessitates the inclusion of
a particular device by default, it is automatically added. Upon
completion of the user’s selection of smart devices to include
in the module, this function automatically notifies the subLayer
that the list of configured modules has been updated.

b) Make logical space: The MakeLogicalSpace function,
responsible for establishing the logical space, restructures the
space based on the user’s location and the current level of the
logical space. Initially, "LEVEL_1" designates the level where
smart devices are interconnected to form the foundational
SubLayer. When there’s a need to modify the SubLayer
configuration, the function verifies the presence of an existing
SubLayer and adjusts its actions accordingly—whether it’s to
amend the SubLayer or add a new one. When configuring a
SubLayer, the function calls MakeModule to add modules and
build the SubLayer. In cases of modifications, the function first
releases the current module configuration before proceeding
to construct a new module through the MakeModule function.
To configure a SuperLayer by combining SubLayers, you first
obtain the list of SubLayers (which can include both SubLay-
ers and SuperLayers). Next, you check user authentication for
space access. After confirming user authentication, configure
the logical space according to the administrator’s selection.

2) Management: When devices are deployed, each device
is registered with the device agent’s cloud system. Subse-
quently, user access management for the device is established.

a) User management: User management is employed
within the infrastructure and internal systems for credentialing,
verification, and authorization in accordance with access con-
trol policies for smart devices and logical space access. The
user information is transmitted to the service administrator of
the corresponding logical space, and access to the respective
device and logical space is granted after approval.

b) Device management: When smart devices are de-
ployed, in common commercial practices, they are typically
registered under the service provider’s account, and personal
data is usually transmitted to the provider’s cloud (e.g., Ama-
zon or Google ecosystem) [8].

3) Event notification: Our introduced system is structured
hierarchically, following a bottom-up approach, and it utilizes
notifications to communicate information regarding changes
and events. Consequently, when there is a configuration alter-

I My House’ B

Living Room Laundry Room Kitchen
Clean
Robot vacuum '

cleaner Air
Purifier

Clean Temp:

Heater
Controller

Dishwasher

ir
Conditioner

Fig. 3. Experiment Configuration

ation or an event takes place in the lower layer, a notification
event is triggered in the upper layer.

IV. PROOF-OF-CONCEPT PROTOTYPE

This section first describes the methodology used in the
evaluation of our prototype and then discusses the evaluation
results. In our experiments, we consider a smart home scenario
comprising smart home appliances that are controllable by
their respective manufacturers, as shown in Fig. 3. These smart
home devices can connect to IPv4 via a WiFi network. The
manufacturers of these home devices include Samsung and
LG, both of which offer APIs for controlling these devices
[9], [10]. Furthermore, individual profiles and lists of smart
devices are managed through dedicated vendor applications.
Additionally, the discovery process updates the list of smart
devices that can currently be configured by the administrator.

A. Scenario

To facilitate this setup, a control server capable of managing
the aforementioned home appliances can be implemented on
either a PC or a mobile device, and each module can be
configured accordingly. Depending on the user’s needs, the
scenario includes a "Clean” module for cleaning and a “Temp”
module for household temperature control, as shown in Fig. 3.
The ”Clean” module and ”Temp” module are enclosed within a
SubLayer referred to as "Living Room,” and this SubLayer, in
turn, is encompassed within a SuperLayer designated as "My
House”. Userl is granted control rights over these household
appliances, thereby gaining access to interfaces for the ”Living
Room” SubLayer and the SuperLayer named "My House”.
Essentially, Userl has to notify the SubLayer and SuperLayer
about events related to the configured home appliances.

As previously outlined, when establishing a scenario based
on the Algorithm 1, the initial step involves configuring the
”Clean” and ”Temp” modules using the MakeModule function.
Employing the MakeLogicalSpace function, we then establish
a SubLayer called “Living Room,” which encompasses the
configured ”"Clean” and “Temp” modules. Subsequently, we
create a SuperLayer referred to as "My House” and integrate
the SubLayers of the living room, laundry room, and kitchen,
into this superLayer. As an example, we will describe the
process of setting up the “Temp” module when Userl is
presently located in their living room. When User1 configures
the "Temp” module in this location and includes household
appliances such as an air purifier, air conditioner, and heater
controller in the module, any changes made to the module

620

loT Air purifier Air conditioner Heater controller

Agent1 ‘ ‘ Agent2 ‘

Start

— Discovery

Discovery

Authorization

<
Authorization,

Setting
Setting | ‘

Seting !

Fig. 4. Sequence diagram of legacy manners

TABLE I
COMPARISON OF LEGACY MANNERS AND LSS SYSTEM
System Action information Click Time
Input User Authentication 1 tua
LSS Discovering and Authorizing 1 ¢
System through Vendor Services da
Make logical space and module | nD + nL t; X (nD + nL)
Set 1 ts
Authorizing through
Legacy | Vendor Services nv ta XV
Manners | Discovering and configuration VD | . x (nV +nD
through Vendor Services n n de % (n nD)
Set nD ts X nD

Legend:nD-Num of Devices, nV-Num of Venders, nL-Num of Logical space

are notified to the SubLayer, which is the living room. The
SubLayer subsequently forwards this event to the SuperLayer
that represents "My House”.

B. Experiment Results

As depicted in Fig. 5, when controlling devices within
the legacy manners framework, one must initially conduct a
search for devices across various access technologies within
the cloud. Subsequently, connections must be established to
each device via their respective access technology once a
sensor is discovered. Each device can be managed through
authentication by an agent designated by the device manufac-
turer. Any necessary device configurations must be executed
separately for each device. On the other hand, in the LSS
system illustrated in Fig. 4, authentication of the agent is the
first step. Following this, the device is automatically detected
through different access technologies. Users can then configure
the module for the discovered device, and the SubLayer and
SuperLayer are configured for the logical space authenticated
to the user. Consequently, device settings can be accomplished
in a single operation, eliminating the need for individual
configurations for each device.

The primary difference between traditional methods and
LSS system is their capacity to establish reusable, logical
module configurations. In the scenario involving the setup of
three smart devices related to temperature within a smart home
service, the legacy system requires three times as many setting
steps as the LSS system. As the number of smart devices
increases, the legacy method’s setting steps also increase in
direct proportion to the number of devices that need setting.

Table I displays the count and timing of user interactions
between the legacy method and the LSS system based on the
aforementioned sequence diagram. In a scenario featuring 3

621

Air purifier Air conditioner Heater controller

LSS system ‘

Agent1 ‘ ‘ Agent2 ‘

Start Authorization

Authorization

Configuration Discoyery

Discovery

DRSS |

Make logical space

Configuration

Discovery

Make logical space

Seletct
Seletct I

Seting

Fig. 5. Sequence diagram of LSS system

devices and 2 agents, where each action consumes lms, the
total click count for the traditional method amounts to 10. On
the other hand, the LSS system entails 8 clicks, encompassing
the creation of the logical space (1 sublayer and 1 superlayer),
making it more simple. In terms of setup, the legacy method
demands as many actions as there are devices, while the LSS
system requires only one interaction. When we compare the
time taken, the LSS system completes the task in 6ms, whereas
the legacy approach takes 8ms. This indicates that the LSS
system offers a more streamlined and quicker setup process.

V. CONCLUSION

This article proposes a novel smart device management
paradigm considering the end-user perspective. The LSS sys-
tem efficiently divides the user’s space into logical spaces tak-
ing into account spatiotemporal changes and user preferences.
The experimental results demonstrate how the LSS system can
improve the performance of IoT-based service operations.

Furthermore, future work will involve the creation of larger-
scale testbeds incorporating state-of-the-art IoT communica-
tion standards and a diverse range of proximal objects.

REFERENCES

[1] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-
edge-cloud orchestrated network computing paradigms: Transparent
computing, mobile edge computing, fog computing, and cloudlet,” ACM
Comput. Surv., vol. 52, no. 6, oct 2019.

[2] P. Bellini, P. Nesi, and G. Pantaleo, “Iot-enabled smart cities: A review of
concepts, frameworks and key technologies,” Applied Sciences, vol. 12,
no. 3, 2022.

[3] A. Solanki and A. Nayyar, “Green internet of things (g-iot): Ict technolo-
gies, principles, applications, projects, and challenges,” in Handbook of
research on big data and the IoT. 1GI Global, 2019, pp. 379-405.

[4] C. Stolojescu-Crisan, C. Crisan, and B.-P. Butunoi, “An iot-based smart
home automation system,” Sensors, vol. 21, no. 11, p. 3784, 2021.

[5] K. Fizza, A. Banerjee, K. Mitra, P. P. Jayaraman, R. Ranjan, P. Patel, and
D. Georgakopoulos, “Qoe in iot: a vision, survey and future directions,”
Discover Internet of Things, vol. 1, pp. 1-14, 2021.

[6] C. G. Garcia, L. Zhao, and V. Garcia-Diaz, “A user-oriented language
for specifying interconnections between heterogeneous objects in the
internet of things,” IEEE Internet of Things Journal, vol. 6, no. 2, pp.
3806-3819, 2019.

[71 M. Yu, “Network telemetry: Towards a top-down approach,” SIGCOMM
Comput. Commun. Rev., vol. 49, no. 1, p. 11-17, feb 2019.

[8] C. Meurisch, B. Bayrak, and M. Muhlhauser, “Edgebox: Confidential
ad-hoc personalization of nearby iot applications,” in 20/9 IEEE Global
Communications Conference (GLOBECOM). 1EEE, 2019, pp. 1-6.

[9] Samsung, “SmartThings,” https://developer.samsung.com/smartthings,

2023, [Online; Samsung Developers].

LG, “LG ThinQ Platform,” https://thinq.developer.lge.com/ko/cloud/,

2023, [Online; ThinQ Connect Service].

[10]

