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Abstract—In this work, we propose a novel method to dynami-
cally adjust bandwidth, power, and quality while considering the
user’s residual data availability in a video streaming environment
utilizing cellular data. The method is designed to ensure the
best video quality without exceeding the user’s data usage
limit through deep reinforcement learning. The main goal is
to maximize the user’s quality of experience (QoE) through
efficient resource allocation. To validate the proposed method,
we conducted comparative experiments with existing algorithms
that do not consider data usage and a fixed resource allocation
method. The experimental results show that the proposed method
increases QoE by 55.01% compared to the methods that do not
consider data usage and by 444.21% compared to the fixed
resource allocation method, providing users with a superior
streaming experience.

Index Terms—Adaptive bitrate video streaming, computing,
power allocation, bandwidth allocation and mobile data usage.

I. INTRODUCTION

Multimedia communication services (e.g., Skype, Face-
Time) and video streaming platforms (e.g., Hulu, YouTube,
Netflix) have become an integral part of everyday life in the
modern world. Mobile video accounts for more than half of
all mobile data traffic worldwide, and this share is expected
to continue to grow. While the introduction of newer wireless
technologies, such as 4G LTE-Advanced, has dramatically
expanded the bandwidth available to users, the emergence
of new video formats such as ultra-high definition (UHD),
high dynamic range (HDR), light fields, and new services
such as virtual reality are further increasing the demand
for bandwidth on networks. These new formats and services
require high-quality video streaming to meet user expectations,
but delivering this while maintaining the quality of experience
(QoE) is a critical issue due to bandwidth and time constraints
of real-time wireless transmission [1], [2].
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Video streaming over wireless channels is a complex prob-
lem requiring high video quality and low transmission delay
under limited communication resources and a rapidly changing
environment. In most streaming applications, the video is a
stored sequence encoded at a high bit rate, which must be
adapted to the wireless channel. The resource utilization pat-
terns of video streaming users are typically irregular. They are
further complicated by stringent delay requirements, limited
transmission power and bandwidth, and mutual interference
[3]. Existing studies have mainly focused on fast download
speeds or high-quality streaming. but these approaches need
to consider the user’s network situation and data allowance
fully. In particular, mobile users often have a limited monthly
data allowance when using cellular data, and ignoring these
constraints can degrade the user experience. Therefore, this
research explores optimizing download speed and quality
dynamically, and hence the use of power and bandwidth.
While the download speed of a chunk fluctuates depending
on the user’s network condition and the quality of the chunk,
the playback time is constant regardless of the quality of
the chunk, and we exploit these characteristics to distribute
resources efficiently.
The goal of our algorithm is to improve the user’s streaming
experience while efficiently utilizing the network’s resources.
To achieve this, we monitor the user’s mobile data usage
in real-time and dynamically allocate power, bandwidth, and
quality accordingly. By doing so, this work presents a compre-
hensive approach to improve the efficiency and user experience
of mobile streaming simultaneously.
The remainder of this paper is organized as follows: Section II
briefly reviews the previous work on which this study is based.
Section III details the system model presented in this study and
the associated optimization problem. In Section IV, we present
our proposal centered on a Markov decision process (MDP).
In Section V, we evaluate and analyze the performance of the
proposed methodology. Finally, Section VI concludes with the
main conclusions of this study.
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II. RELATED WORKS

Resource Allocation for Video Streaming. In [4], an inte-
grated approach of caching, computing, and power allocation
strategies was taken to optimize adaptive bitrate(ABR) video
streaming, and mixed integer nonlinear programming(MINLP)
techniques were used to simplify the optimization problem.

In [5], the dynamic allocation of bandwidth and transmit
power using unmanned aerial vehicles (UAVs) as relay plat-
forms in hotspot areas was solved using Lyapunov optimiza-
tion techniques.

In [6], developed a strategy to improve the quality of
experience (QoE) of mobile users through buffer management
and bandwidth allocation strategies in a limited resource
and communication environment and effectively solved the
complex optimization problem using Lyapunov optimization
and fundamental decomposition techniques.
Adaptive Bitrate Allocation for Video Streaming. In [7],
they study to provide an optimal video streaming experience
to viewers in MEC networks considering limited storage,
computing power, and spectrum resources. In this study, they
approach the problem of selecting different bitrate versions
of a video segment as a non-convex optimization and mixed
combinational problem and introduce a transcoding technique
for this purpose.

In [8], a novel approach for efficient forward error cor-
rection(FEC) in real-time communication is presented. To
overcome the limitations of traditional adaptive forward error
correction(AFEC) algorithms, they introduce a QoE-oriented
adaptive bitrate-FEC co-control algorithm called ABRF, which
predicts the loss patterns in the network and utilizes a QoE
model to simultaneously make suitable bitrate and FEC deci-
sions for real-time video streaming.

III. SYSTEM MODEL

Consider an orthogonal frequency division multiplexing
(OFDM)-based communication system with a fixed OTT edge
server and N users, indexed by N = {1, 2, . . . , N}, as shown
in Figure 1. We assume that each user has different mobile
usage and a fixed monthly allowance. Each user receives
resource optimization at the same time slot t ∈ {1, 2, . . . , T},
and the video is subdivided into L = {1, 2, . . . , L} chunks.
The user’s location is denoted by xi

t, y
i
t at time slot t, and the

power, bandwidth, and quality are indexed byP i
t , Bi

t , and Qi
l

(∀ i ∈ N , ∀ t ∈ T , ∀ l ∈ L) respectively. Users use video
streaming services according to their allocated resources. The
server receives delayed information from the user’s buffer and
reallocates resources based on that information to optimize the
user’s streaming experience.

A. Buffer Model

One of the critical factors for optimizing the user’s experi-
ence in video streaming is buffer management. According to
the paper [9], The user starts receiving a chunk at time tr,
finishes downloading that chunk at tp, and starts streaming.
This results in an initial buffering time of (tp − tr) seconds.

The buffer will remain stable if the average data throughput
equals the playback rate.

The server provides a set Qi
l =

{240p, 360p, 480p, 720p, 1080p, 1440p} of different bitrate
options for each video chunk. We assume the user can
download the next chunk only after completely downloading
chunk l at time t at a certain bit rate Ri. If the current buffer
level is high, the user can select and download the highest
quality chunk within the data usage limit; however, if the
buffer level is low, the user must download chunks at a bit
rate below the expected throughput.

We define the length of each chunk, i.e., the playback time,
as L. The download time of the ith chunk is represented by
Di, which is calculated as the chunksize(bits)/Ri. Accord-
ing to the paper [9], the buffer OFF period after downloading
the ith chunk is expressed as follows:

δi = max(max(bi −Di, 0) + L− bmax, 0) (1)

The buffer OFF period is when the buffer is empty during
streaming. where bmax is the total size of the buffer, bi is the
buffer size when the ith chunk starts downloading at a certain
bit rate Ri. The rebuffering time after downloading the ith
chunk is expressed as follows:

γi = max(Di − bi, 0) (2)

The rebuffering time is required for the buffer to be refilled
during streaming. The size of the following buffer can be
expressed as follows:

b(i+1) = max(max(bi −Di, 0) + L− δi, 0) (3)

B. QoE Metric

A key metric for measuring user satisfaction in video
streaming services is QoE. Users consume streaming services
based on their allocated resources, which results in a specific
QoE. This allows service providers to optimize the user’s
experience and explore ways to improve the quality of their
service. As streaming occurs in chunks, the QoE consists of
the following elements The quality of the video, the rate
of change in quality, the length of the buffer, the rate of
change in the buffer, the amount of data the user has left.
Putting these factors together, the defined value for each user’s
QoE is given by the expression [10]:

Quality = q(t) (4)
Quality Diff = q(t+1) − q(t) (5)

Buffer = b(t) if(b(t) > 0) (6)
Buffer Diff = b(t+1) − b(t) (7)

Data Availavility = P (a(t)) (8)

This is important for users with limited data packages because
excessive data usage can incur additional costs or service
interruptions. The penalty P (x) helps to balance the quality of
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Fig. 1. System Model. By allocating mobile resources based on the user’s location and determining the quality of chunks based on the remaining mobile
availability, it provides users with optimal download speeds and increases QoE.

streaming with data usage by penalizing when data availability
falls below or exceeds a specific threshold interval.

P (a) =




−50, if ait < alow

0, if alow ≤ ait ≤ ahigh

−50, if ahigh < ait

(9)

The expression to get the QoE from the above expressions is
as follows:

QoE = a1Quality + a2(1−Quality Diff)

+ a3Buffer + a4Buffer Diff (10)
+ a5Data Availability − a6latency

where a1-a5 are the weights, latency is the sum of the user’s
download time, rebuffering time, and buffer off time in a single
time step.

C. Communication Model
This section describes the communication model, focusing

on the relationship between the user’s remaining data and
availability ai, the distance di between user i and the server,
the path loss model, the channel gain, and the user’s data rate.
The distance between user i’s horizontal coordinates {xi, yi}
and the server’s horizontal coordinates {xb, yb} is:

dbi =

(xi − xb)2 + (yi − yb)2, ∀i ∈ N (11)

After that, the channel gain between user device i and server
b is calculated according to [11] using a free-space path loss
model.

gbi =
g0

(dbi )
θ
, ∀i ∈ N (12)

where go denotes the channel gain at the reference distance
d0 = 1m, and θ is the path loss exponent.

To analyze the overall performance of a communication
system under simple assumptions, we typically set the channel
gain to a degree that maintains the signal loss of the system
under average circumstances. The data rate Ri for user i can
be calculated:

Rt
i = Bt

i log2(
1 + P t

i g
b
i

N0
) , ∀i ∈ N, ∀t ∈ T (13)

Where N0 is the interference power.

D. Problem Formulation

In this section, we formulate the optimization problem,
where the main objective is maximizing the average QoE for
each user.

P1: maximize
P ,B,K

T
t=1

N
i=1

QoEn(t) (14a)

subject to
N
i=1

Pi ≤ Ptotal, ∀t ∈ T (14b)

N
i=1

Bi ≤ Btotal, ∀t ∈ T (14c)

Ri ≥ Rqk , ∀i ∈ N , ∀t ∈ T (14d)
Alow ≤ Ai ≤ Ahigh, ∀i ∈ N (14e)

Constraint (15a) ensures that the sum of the power allocated
to all users does not exceed the total power of the BS,
Ptotal. Constraint (15b) ensures that the sum of the bandwidth
allocated to all users does not exceed the total bandwidth Btotal
of the BS. Constraint (15c) guarantees that each user’s data
throughput Ri is greater than or equal to the required bit rate
Rqk of the video chunk. Constraint (15d) guarantees that each
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user’s current remaining data availability Ai has a capacity
within a threshold.

IV. SUGGESTIONS

In this study, we propose a system that leverages deep
reinforcement learning to maximize the user’s QoE in a video
streaming environment while efficiently managing power,
bandwidth, and data availability. The proposed system can
maximize QoE by ensuring optimal download speed without
exceeding the user’s data availability and providing a smooth
and precise viewing experience.

A. Defining a Markov Decision Process (MDP)

In this paper, we use Proximal Policy Optimization(PPO) for
optimal mobile resource allocation for high QoE. The MDP
for reinforcement learning is as follows.

• State: In reinforcement learning, the state is information
about the current state of the environment that plays an
important role in determining what the agent will do. In
this system, the state is the user’s location in the current
step, the availability of remaining data, and the allocated
quality and buffer of the previous step.

s(t) = {xt
i, y

t
i , a

t
i, b

t−1
i , qt−1

i } (16)

• Action: The action space represents the possible choices
for each variable. In this system, bandwidth and power are
normalized to values between 0 and 1; for each interval,
they are replaced by their actual values. Therefore, the
action space is defined as follows:

a(t) = {(b, p, q) | b ∈ [0, 1], p ∈ [0, 1],

q ∈ [240p, 360p, 480p, 720p, 1080p, 1440p]}
(17)

• Reward: Reward is the feedback an agent receives when
it performs a specific action in a particular state. It is used
as a criterion to determine whether the action is good or
bad and to learn the optimal policy. In this system, the
reward is the sum of each user’s QoE, calculated from the
buffer size, chunk quality, and remaining data availability
in the current and previous phases.

R(a(t), s(t)) = {
N∑
i=1

QoEt
i , ∀N} (15)

PPO is an algorithm that performs policy optimization.
Unlike other algorithms, it has high sample efficiency
and learns quickly and reliably by using a clipping
mechanism to limit the difference from the previous
policy when updating it. In this experiment, we used PPO
and A2C because the action space is non-discrete, and the
algorithm proposed in this paper is shown in Algorithm
1.

Algorithm 1 Proposed Mobile Resource Allocation algorithm
1: Initialize each user ai, xi, yi and class instance variables

and calculate distance dbi
2: Execute action a(t) according to policy πθ(a|s(t))
3: Reshape action a(t) to the number of users N
4: for every time slot t do
5: for Iteration = 1 to N do
6: Calculate Data Rate Ri

7: if The user has finished downloading all the chunks
then

8: skip download
9: end if

10: if buffer length bi is as full as the buffer is available
then

11: Playback of downloaded chunks starts a FIFO
scheme

12: end if
13: Put a fully downloaded chunk from the time slot t

into the bi
14: Calculate remaining mobile exhaustion ati
15: Obtain reward R(s(t), a(t)) and observe the new

state s(t+ 1)
16: end for
17: end for
18: if All N users have finished downloading then
19: Obtain the final reward R(s(t), a(t)) for all N
20: end if

TABLE I
PARAMETERS FOR SIMULATION

Parameters Description Value
N0 Additive white gaussian noise power -174 dBm

g0 Channel Gain 50 dB

BBS Bandwidth of BS 1MHz

PBS Power of BS 1W

V. SIMULATION RESULTS

A. Simulation Setting

For the simulation, we assume that there are N users within
a coverage area of 1km of an OTT server located at coordinates
[0,0], each requesting a different video and that the user’s
location changes every time step due to the user’s movement.
In addition, each user has a different amount of remaining
mobile data, and the parameters used in the experiment are
shown in Table 1. We Assume that the Max Buffer Length
bmax is 15 seconds, the number of users N is 3, and the
number of video chunks L is 20.
We compared our proposed algorithms with the following two
benchmarks:

• Resource Allocation Algorithm with A2C: Train the
proposed algorithm as an A2C agent.

• Algorithm to assign only high definition: Static re-
source allocation algorithms that consistently assign only
high quality to users.
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Fig. 2. Latency Comparison, The length of the graph is the number of time steps it took to download the chunk. The proposed algorithm using PPO and
A2C has a low download time and no delay. Still, the static allocation algorithm, which allocates the same bandwidth and power to all users and serves only
high-quality chunks, has a high delay due to the long time to fill the buffer after starting streaming. The chunks are not downloaded smoothly to the buffer
even after starting playback, increasing the delay by 3% to 5%.

Fig. 3. Data Availability Comparison, The length of the graph is the number of time steps it took to download the chunk. The proposed PPO algorithm
provides users with high-quality chunks based on the user’s network conditions. When the residual data availability decreases and reaches a certain point, the
quality can be adjusted to provide flexibility in data usage, while the proposed algorithm using A2C only provides low-quality chunks, achieving low QoE
with little reduction in residual data usage, and the static allocation algorithm does not consider the user’s data rate and only provides high-quality chunks,
which quickly exhausts the user’s mobile allowance.

B. Performance Evaluation

Fig. 4. Cumulative Reward, The performance of proposed algorithms using
different methods in terms of cumulative rewards. The figure shows the
performance of a proposed algorithm trained with PPO, a proposed algorithm
trained with A2C, and a static resource allocation algorithm that consistently
rewards only high quality. The experimental results show that the proposed
method improves QoE by 55.01% compared to the method that does not
consider data usage and by 444.21% compared to the static resource allocation
method, providing users with a superior streaming experience.

Figure 4 compares the performance of suggestion algo-
rithms using different methods in terms of cumulative rewards.

This figure shows the performance of a suggestion algorithm
trained with PPO, a suggestion algorithm trained with A2C,
and a static resource allocation algorithm that consistently
rewards only high quality. The cumulative reward is an essen-
tial metric to evaluate each algorithm’s quality of experience
(QoE). The graph shows that the proposed algorithm with PPO
achieves significantly higher cumulative reward than the other
algorithms and provides optimal QoE. PPO generally uses a
clipping mechanism to improve data efficiency and sample
reuse and provides stable learning. At the same time, A2C is
relatively simple but has low data efficiency due to no sample
reuse. Due to this difference, PPO achieves higher QoE values
with more stable learning.

Figure 2 visualizes the incidence of rebuffering by algo-
rithm, an essential factor that can have a significant impact on
the viewer experience. As shown in the figure, the suggestion
algorithm trained with A2C downloads chunks with lower
quality than the user’s data rate. In contrast, the suggestion al-
gorithm trained with PPO gives the maximum quality without
exceeding the user’s data rate, so it does not cause rebuffering,
resulting in no latency. On the other hand, an algorithm that
consistently grants only high quality will download chunks at
a slower rate because it grants quality that exceeds the user’s
data rate, resulting in a longer buffer-off time at the beginning
of the download and continuous rebuffering thereafter.

Figure 3 compares the user’s mobile residual usage by
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algorithm. The suggestion algorithm trained with A2C down-
loads chunks at a consistently lower quality, so downloads end
quickly, and mobile data usage doesn’t fluctuate as much. In
contrast, the suggestion algorithm trained with PPO downloads
chunks at the highest possible quality based on the user’s
data speed. Once the mobile residual usage reaches a certain
level, it lowers the download quality to prevent the residual
from being exhausted too quickly. Due to these characteristics,
the proposed algorithm can efficiently manage the user’s data
usage while maintaining high experience quality. However, for
an algorithm that only assigns consistently high quality, we
observe that the monthly data residual quickly depletes and
converges to zero because it does not consider the user’s data
speed and residual mobile usage.

VI. CONCLUSION

In this paper, we propose to use deep reinforcement learn-
ing in a video streaming environment using cellular data to
allocate bandwidth and power considering the user’s location
and network conditions and to allocate quality considering
mobile residual usage dynamically. By optimizing the quality
of experience (QoE), which is an essential requirement in
video streaming, the proposed algorithm can provide high
QoE to users with fixed monthly mobile usage. Simulation
results show that, compared with the benchmark algorithm, the
proposed algorithm provides high QoE regarding rebuffering
and mobile usage management and provides users with a
balanced download and viewing experience. This dynamic
resource allocation strategy is expected to improve streaming
performance in wireless network environments. In future work,
we will conduct further experiments and analysis to improve
the performance of the proposed algorithm further and verify
its practicality in different network environments and user
scenarios.
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