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Abstract—More evenly distributed renewable energy sources
are emerging as an alternative to fossil fuels, especially for power
generation in rural areas. This study compares four of the most
widely used models, the Convolutional Neural Network (CNN),
the Long Term Memory (LSTM), the Stacked Autoencoder (SAE)
and the Deep Belief Network (DBN), for forecasting wind speed
and direction in order to control the output of a wind turbine
generator. The meteorological data used were downloaded from
the NASA database for the period January 1, 2012 to December
31, 2021 on the Benin coast. The forecasting model developed
combines one of the LSTM, CNN, DBN, SAE models and the
Fast Fourier Transform, which was used to extract the most
important frequencies in the data. The results of the comparison
showed that the best-performing model was the LSTM, with
respective root mean square errors (RMSE) and coefficients of
determination of 0.36 m/s and 92% for wind speed, and 8.1 °
and 71% for wind direction.

Keywords : Machine learning algorithms - Forecast - Wind
speed and direction - LSTM - DBN - CNN - SAE

I. INTRODUCTION

In order to expand their networks and reach often isolated
populations in rural areas, Telecom Network Companies often
need to install their equipment (including Base Transceiver
Stations (BTS)) in remote areas with no access to conventional
power grids. Renewable energy sources, given their more
uniform distribution and the fact that they are in line with
policies to reduce greenhouse gas emissions, are a viable
alternative to the fossil fuels often used in generating sets. With
the current context, the purchase price as well as the transport
cost of diesel have increased on the market. As alternatives to
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diesel, telecom operators are exploring other renewable energy
sources to power mobile base stations. Renewable energies
include solar, wind, hydraulic, biomass and geothermal. The
favorable climatic and geographical conditions of Africa and
in particular of Benin give it considerable potential in terms
of renewable energies [1]. Benin benefits from abundant
sunshine in many regions. Photovoltaic solar panels can
be widely deployed to generate solar-generated electricity.
In addition to these factors, Benin, like many regions of
Africa, has considerable wind potential, particularly along the
coasts and in desert areas. Wind energy can be harnessed
using wind turbines. All this theoretical renewable potential
should allow telecommunications operators to do without
easy sources to power base stations by proposing new
hybrid power architectures for telecommunications relay
sites. Indeed, beyond investment issues, the integration of
renewable energies into existing energy systems in general
and in the telecommunications sector in particular can
present a certain number of challenges, among which: they
are generally temporal and spatial . -dependent, have low
electricity production capacity and low energy efficiency.
As a result, their integration (mainly photovoltaic solar and
wind) complicates grid balancing, degrades grid reliability and
increases the cost of electricity due to technical constraints
[2]– [4]. Faced with this random variation in the power
generated by solar photovoltaic and wind sources, several
solutions can be considered, in particular the prediction of the
variability of the output power [5]– [6]. Several forecasting
models have therefore been developed: the persistence method
[7], physical methods [8]– [9] and generally more precise
statistical methods including artificial intelligence techniques

628979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024



such as Convolutional Neural Network (CNN). , Long-term
memory (LSTM). ), Stacked Autoencoder (SAE) or Deep
Belief Network (DBN) [10]– [12]. In this article, we propose
a comparative study of Deep Learning models to predict wind
speed variability, with the aim of effectively controlling wind
production for their use in the telecommunications sector to
power base stations. In the second section, the methodology
adopted is described step by step, as well as the equipment
used. The third section presents the results obtained and
concluded.

II. METHOD

A. Literature review on Deep Learning models used for
predicting wind power

The number of publications reporting on deep learning-
based methods has grown fast in recent years. This is
illustrated in Figure 2-a, which shows the number of articles
on deep learning-based wind energy research found in the
SCOPUS database for the period 2014-2023 (the last ten
years). The figure shows that most of the articles in SCOPUS
are published in the last three years, with 4292 articles
out of a total of 7215 published from January 2014 to
February 2023.This exponential growth shows the importance
of predictions and the current interest in them in the scientific
community. Recently, interest in hybrid models has increased.
Almost half of the articles published in SCOPUS in 2022
concern hybrid forecasting models. This trend is explained
by the superiority of these models over simple deep learning
models, as shown by all comparative experiments. These
hybrid models are either a combination of several Deep
Learning models, or a combination of a Deep Learning model
and a data processing technique. Of these hybrid models
encountered, the majority include CNNs, LSTMs, DBNs,
SAEs or GRUs. RNNs and all their newer versions, such as
LSTM and GRU, are the most popular models after hybrid
models, which makes sense because renewable energy data
are time series, and RNN models are known for their ability
to extract temporal features. This is why researchers use them
alone or in combination with other methods. Figure 2-b shows
the percentage use of each deep learning architecture in papers
published in SCOPUS in 2022 (for wind power forecasting). In
this study, we have therefore selected the CNN, LSTM, DBN
and SAE models for a comparative study, combined with data
processing methods.

B. Data acquisition and pre-processing

Once the meteorological parameters to be studied (wind
speed and direction) were known, a database was identified
that could provide the related data for all the samples. For
our work, NASA’s POWER — Data Access Viewer database
was identified and exploited [13] . Information on the data
downloaded from it is presented below:

• Period: January 1, 2012 to December 31, 2021;
• Satellite: MERRA-2;
• Resolution: (1/2)◦ × (5/8)◦ latitude/longitude ;
• Longitude : 2.3855;

Fig. 1. (a) Number of publications reporting on deep learning-based methods
in SCOPUS, (b) Deep learning models for wind energy forecasting used in
2022 publications in SCOPUS.

• Latitude : 6.3471;
• Data step: hourly;
• Parameters:

– Ws: Wind speed at 50 meters from ground in (m/s);
– Wd: Wind direction at 50 meters from ground in (◦);

To obtain high-performance forecasting models, input data
usually needs to be pre-processed. This is the most important
step, and usually the largest part of a forecasting task, as a
forecasting model only draws information from the data it is
presented with. Data pre-processing is the process of preparing
raw data and making it suitable for a machine learning model.
It is the crucial first step in creating a machine learning model.
In our proposed data processing technique, we extract the
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most important frequencies in the data to integrate the concept
of periodicity into our dataset in order to increase model
accuracy. Since we’re dealing here with meteorological time
series, they often have clear daily or annual periodicity, for
example. To facilitate forecasting, it is important to make
models understand these notions of frequency. To this end,
Python 3’s Fast Fourier Transform (FFT) is used to determine
the important frequencies in these series.
It is seldom possible to exploit parameters and their data as
downloaded or acquired in a forecasting task. Typically, these
parameters are either transformed, combined or supplemented
to create a new dataset in order to give the models a precise
understanding of the target information. The first variables
added to the dataset are those created from the significant
frequencies identified earlier. For each significant frequency,
two variables described by equations (1) and (2) are added:

xsin = sin

(
t ∗

(
2π

T

))
(1)

xcos = sin

(
t ∗

(
2π

T

))
(2)

where xsin and xcos are the newly added variables, t is
the identified important period. T is the identified important
period.
In our case, it’s also important to make the models understand
the concept of wind direction. Wind directions are angles, and
models need to understand that 0° and 360° are identical.
What’s more, wind direction isn’t very useful if the wind
is weak. The two variables (wind speed and direction) are
therefore combined to create two new variables, as shown in
equations (3) and (4).

Wx = Ws sin(Wd) (3)
Wy = Ws cos(Wd) (4)

Wx and Wy are the two new variables created, Ws wind
speeds in m/s and Wd wind directions in radian. Once
data cleansing has been carried out and new variables
added, quality data must be consolidated in other forms
by modifying the value, structure or format of the data,
using data transformation strategies such as normalization
or standardization. Normalization, often simply called Min-
Max scaling, reduces the extent of the data so that it is set
between 0 and 1 (or between -1 and 1 if there are negative
values). It is most effective in cases where standardization
doesn’t work as well. If the distribution is not Gaussian, or
if the standard deviation is very small, the min-max scale
works better. Normalization is generally performed using the
following equation:

xnorm =
x−min(x)

max(x)−min(x)
(5)

Finally, the dataset is split. The aim of splitting the data
into time series is similar to that of random splitting, namely to
validate the predictability of the model irrespective of how the
training-test datasets are split. However, time-series splitting

ensures that the test datasets are more recent or older than the
training datasets, which is more realistic since we won’t be
able to train on ”future” data. We have opted for a split into
three parts: Training, Validation and Test, with 70%, 20% and
10% respectively.

C. Modeling and hyper parameter optimization
1) Modeling: As indicated in section 2.2, the models

selected for this study are LSTM (Long short-term memory),
CNN (Convolutional Neural Network), DBN (Deep Belief
Network) and SAE (Stacked Autoencoder).

Long Short-Term Memory
The structure of an LSTM model is composed of three main

gates:
• Forget Gate
• Input Gate
• Output Gate
Mathematically, the operations in an LSTM are defined as

follows, xt is the input at time t, ht is the hidden state at time
t, ct is the cell state at time t, σ is the sigmoid function, and
tanh is the hyperbolic tangent function.

• Calculation of the forgetting gate (ft):
ft = σ(Wf ∗ [ht−1, xt] + bf )

• Calculation of the input gate (it):
it = σ(Wi ∗ [ht−1, xt] + bi)
c′t = tanh(Wc ∗ [ht−1, xt] + bc)

• Update cell status (ct):
ct = ft ∗ ct−1 + it ∗ c′t

• Output gate calculation (0t):
ot = σ(Wo ∗ [ht−1, xt] + bo)

• Calculation of the forgetting gate (ht):
ht = ot ∗ tanh(ct)

In these equations,Wf ,Wi,Wc and Wo are the weight
matrices for the different gates, and bf ,bi,bc and bo are the
corresponding bias vectors.

Convolutional Neural Network
A CNN model is structured as follows:
• Convolution layer: The first layer of a CNN is generally

a convolution layer. It applies a number of filters (kernels)
to the input data to extract relevant features. Each filter
traverses the data and produces an ”activation map” by
applying a convolution operation. Let I be the input data,
K the convolution filter, and B the associated bias. The
convolution operation for an output feature O is given
by:

O(i, j) =
∑
m

∑
n

I(i+m, j + n) ∗K(m,n) +B (6)

• Activation function: After each convolution operation,
an activation function (such as ReLU - Rectified Linear
Unit) is applied element by element to the resulting
activation map. This introduces non-linearity into the
model, enabling it to learn complex patterns.

ReLU(x) = max(0, x) (7)
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• Pooling layer: After certain convolution layers, pooling
operations (such as max-pooling) are performed to reduce
the spatial dimension of the activation map and the
number of parameters in the model. Pooling retains the
essential features. For a given region of the activation
map, max-pooling retains the maximum value:

Max− Pooling(X) = max(region) (8)

• Fully Connected (Dense) layers: One or more fully
connected layers can follow the convolution and pooling
layers. These layers perform linear operations on the
extracted features to perform final classification or other
tasks. Let X be the output of the previous layer, W
the weight matrix and b the associated bias. The fully
connected operation is given by:

Y = XW + b (9)

• Output layer: The last layer of the CNN produces the
output results, usually using an appropriate activation
function (such as softmax for classification) to obtain
probabilities or class scores.

Deep Belief Network
A DBN consists of two main layers:
• Visible layers: The first layer of the network, called the

visible layer, represents the model inputs. These inputs
can be binary or real variables

• Hidden layers: The intermediate layers are called hidden
layers. These layers are organized into several levels,
with each level connected to the visible and other hidden
layers. The neurons in these layers are generally binary,
representing features extracted from the input data.

Mathematically, a DBN can be represented as follows:
• Boltzmann Restricted Network (BRN): Each pair of

adjacent layers in a DBN is modeled as a BRN. An
BRM is a probabilistic model with a visible layer v
and a hidden layer h. Activations of the visible layer
are denoted v = (v1, v2, ..., vn) and those of the hidden
layer are denoted h = (h1, h2, ..., hm).
The energy of a particular state (v, h) in an BRM is
given by :

E(v, h) = −
n∑

i=1

m∑
j=1

Wijvihj −
n∑

i=1

bi vi −
m∑
j=1

cj hj

where Wij are the weights between the visible vi and
hidden hj units, bj and cj are the biases of the visible
and hidden units respectively.

• Top-down Propagation (Fine-Tuning): Once the BRMs
have been pre-trained layer by layer, the network is
usually fine-tuned using a technique such as gradient
back-propagation to adjust the weights and biases of the
entire network, thus optimizing model performance for
the specific task.

Stacked Autoencoder
An SAE typically consists of:

• Encoder: The encoder transforms the input data into
an internal representation (encoding) using a layer of
neurons called the encoding layer. This layer is generally
narrower than the input layer, resulting in information
compression.

• Decoder: The decoder reconstructs the input data from
the internal representation obtained from the encoder. The
aim of the decoder is to minimize the reconstruction error
between the input data and the reconstructed data.

2) Hyper parameter optimization: As presented previously,
LSTM, CNN, DBN and SAE networks are made up of several
layers whose configurations can influence their learning
performance. Thus, for a given forecasting task, the optimal
parameterization to achieve good forecasting performance
with reduced computation time must be sought. In general,
building an efficient machine learning model is a complex
and tedious process, involving determining the appropriate
algorithm and obtaining an optimal model architecture by
tuning its hyperparameters (HP). To build an optimal model,
we need to explore a range of possibilities. In Table 1 below,
models hyperparameters and variation ranges are presented.

TABLE I
MODELS HYPERPARAMETERS AND VARIATION RANGES

Hyper Parameters Hyper Parameters
Input data size 2 to 24 hours in 1-hour steps

Output data size 1 to 23 hours in 1-hour steps
Learning rates Between 10−2, 10−3 and 10−4

CNN
Number of Filters 10 to 300 in steps of 10
Number of units 10 to 1000 in steps of 10

LSTM
Number of units 10 to 1000 in steps of 10

DBN
Hidden layers 1 to 6 in steps of 1

Hidden layer dimension 32 to 260 in steps of 32
SAE

Number of units 10 to 1000 in steps of 10

Hyper-parameter optimization is performed using the Keras-
tuner library in Python3 [14] .

D. Models training

Once the optimal parameters of the models have been
determined, they are then trained on the dataset. The models
are developed and trained using Tensorflow under python3.
TensorFlow is a leading open source platform for machine
learning. It features a comprehensive and flexible ecosystem
of tools, libraries and community resources that enable
researchers to advance machine learning and developers to
easily create and deploy machine learning-based applications
[15] .

E. Model performance evaluation

To evaluate the models, we use the Mean Square Error
(RMSE) and the coefficient of determination (R2) as metrics.
As a boundary condition of the forecast horizon when
optimizing hyperparameters, we aim to obtain models for

631



which the RMSE is less than 10% of the nominal value of
the study parameter. The RMSE and R2 equations are given
in (1) and (2) respectively:

RMSE =

√√√√ 1

n

n∑
i=1

(
Yi − Ŷi

)2

(10)

R2 = 1−
∑n

i=1

(
Yi − Ŷi

)2
∑n

i=1

(
Yi − Ŷ

)2 (11)

III. RESULTS

A. Optimized hyperparameters

Table II shows the hyperparameter optimization results. We
can see that the maximum horizon is 8h, in accordance with
the condition stated in 2.6, with an input data size of 12h.
For the LSTM model, the optimal number of units is 560. For
CNN, the optimal number of filters and units are 180 and 320
respectively. For the DBN model, the number of hidden layers
and layer size are 2 and 128 respectively. The optimal number
of SAE units is 370. The optimal learning rates for all models
are 0.001.

TABLE II
OPTIMIZED MODELS HYPERPARAMETERS

HYPER PARAMETERS Value
Input data size 12h

Output data size 8h
Learning rates 10−3

CNN
Number of Filters 180
Number of units 320

LSTM
Number of units 560

DBN
Hidden layers 2

Hidden layer dimension 128
SAE

Number of units 370

B. Forecasting results

Once the optimized hyperparameters had been found, they
were used with the models on the Test set to make forecasts.
Tables III, IV 4 below show the forecasting performance of
the CNN, LSTM, DBN and SAE models over the entire Test
set of parameters Wx, Wy respectively.

TABLE III
Wx PREVISION PERFORMANCES

LSTM CNN DBN SAE
RMSE (m/s) 0.47 0.61 0.52 1.02

R2 0.89 0.76 0.81 0.65

It can be noted that, overall, the best-performing model
is the LSTM model for Wx and Wy parameter predictions,
followed in order by the DBN, CNN and SAE models. From
these two predicted parameters Wx and Wy , velocity and

TABLE IV
Wy PREVISION PERFORMANCES

LSTM CNN DBN SAE
RMSE (m/s) 0.32 0.41 0.31 0.53

R2 0.85 0.78 0.84 0.74

direction can then be deduced using expressions (11) and (12)
below.

Wd = tan−1

(
Wy

Wx

)
(12)

Ws =
Wy

sin

(
tan−1 Wy

Wx

) (13)

Tables V and VI below show the forecasting performance of
the CNN, LSTM, DBN and SAE models over the entire Test
set of parameters Ws and Wd respectively.

TABLE V
Ws PREVISION PERFORMANCES

LSTM CNN DBN SAE
RMSE (m/s) 0.36 0.48 0.42 0.78

R2 0.92 0.85 0.89 0.78

TABLE VI
Wd PREVISION PERFORMANCES

LSTM CNN DBN SAE
RMSE (m/s) 8.1 11.2 8.6 15

R2 0.71 0.62 0.68 0.56

Figures 2 and 3 below show the predicted and actual Wx and
Wy respectively for a randomly selected portion of the dataset.
We can see that the performances presented in Tables 3 and 4
are confirmed: the values predicted by the LSTM model are
those closest to the true values, followed by DBN, CNN and
SAE. It is worth remembering that the indexes represent the
order numbers of the forecast times

Fig. 2. Wx Real and Forecasted
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Fig. 3. Wy Real and Forecasted

Figures 4 and 5 show predicted and true speeds and
directions. The conclusion is the same: the best-performing
model is the LSTM. Overall, we can see that the best-
performing model for forecasts remains the LSTM model,
followed by the DBN, CNN and SAE models in that order.

Fig. 4. Wind Speed Real and Forecasted

Fig. 5. Wind Direction Real and Forecasted

IV. CONCLUSION

Advances in mathematical modeling, physical
representations, statistical analysis and computing power

have made forecasting a viable option today. In our case,
the prediction of wind speeds and directions is essential
for the smooth and efficient integration and operation of
wind turbines. In this work, a comparative study between
the LSTM, CNN, DBN and SAE models was carried out,
with the LSTM model proving to be the best performer.
Nevertheless, the performance of the DBN and CNN models
is appreciable, as they are often not far from the predictions
of the LSTM model. These results could be improved by
combining time series decomposition techniques, given the
strong random variation in wind speed.
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[5] Ö. Kiymaz and T. Yavuz, “Wind power electrical systems integration
and technical and economic analysis of hybrid wind power plants,”
in 2016 IEEE International Conference on Renewable Energy
Research and Applications (ICRERA), Nov. 2016, pp. 158–163. doi:
10.1109/ICRERA.2016.7884529.

[6] P. Menanteau and C. Clastres, “L’intégration des énergies renouvelables:
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