979-8-3503-3094-6/24/$31.00 ©2024 IEEE

On Using Genetic Algorithm for Optimal Controller
Placement 1n Software-Defined Networks

Emmanuel Asamoah, Isaac Ampratwum, Amiya Nayak
School of Electrical Engineering and Computer Science
University of Ottawa, Canada

Abstract—Through centralized management, the Software-
Defined Networking (SDN) paradigm separates the control and
data layers of conventional networks and offers greater flexibility
and scalability. However, the Controller Placement Problem
(CPP) is a significant issue in SDN since it directly affects
the network’s effectiveness and performance. The CPP makes
an effort to establish the optimal number of controllers for
each network as well as their relative placement. This normally
reduces communication lags between switches and controllers
and upholds the robustness and dependability of the network.
In this research, we provide a heuristic that effectively solves
the CPP using the Genetic Algorithm (GA) technique. With
the help of the GA, we are able to find the optimal controller
placement correlation based on critical parameters like network
delay, dependability, and availability.

Index Terms—Controller Placement Problem (CPP), Software-
Defined Networking (SDN), Genetic Algorithm (GA)

I. INTRODUCTION

To obtain almost optimal controller placement in relation
to particular specified or adaptive criteria, the CPP is very
important in the SDN paradigm. Several of these requirements
act as limitations required for optimal network performance.
Previous studies have looked at individual criteria in an effort
to alleviate the CPP in SDN. Our research strategy, in contrast,
takes into account some of the most important aspects of any
network, such as network delay, availability, and resilience.
Considering the trade-offs between the numerous factors at
play, we approach this already complex topic as a multi-
objective optimization problem. By approaching the CPP as
a multi-objective issue, we seek solutions that simultaneously
optimize several goals, leading to a more thorough and effec-
tive network design.

In this work, we employ the Genetic Algorithm which is a
heuristic method that simulates natural selection and genetics.
The researchers in [1] define the GA as a stochastic search
method that operates on populations of potential solutions.
With strict adherence to the switch to controller and controller
to controller latency requirements, our approach is designed
to essentially forecast the number and location of controllers
that will be most practical. Additionally, it incorporates com-
putations of set threshold availability within the control plane
and between traffic forwarding nodes and their controllers. We
have successfully applied the genetic algorithm to handle such
multi-objective situations and find the Pareto front of the issue

[2].

634

In this paper, we use a GA-based aproach to predict con-
troller placement according to a number of requirements. The
contributions of this paper are summarized as follows:

o Our controller placement strategy takes network latency
limits into account. While guaranteeing that each switch
has access to at least two controllers for robustness, it
seeks to reduce the network’s overall latency.

e In order to further improve network availability in the
event of controller failure, we establish highly available
alternate routing path between controllers.

o With the addition of node-disjoint recovery routes to
restore paths, we present a cost-based availability aug-
mentation strategy for controller-to-controller communi-
cations. If a connection or controller fails, this strategy
makes sure the network can quickly recover.

o« We test our proposed strategy using an experiment on
a benchmark network from the Survivable Network De-
sign library [3], comparing the results to those of some
existing methods.

II. RELATED WORK

Using practical guidelines to swiftly arrive to approxima-
tions of answers is part of the heuristic approach, which
is particularly useful for tackling challenging or significant
problems. Shortcuts are used in this problem-solving method
to produce virtually perfect solutions in a constrained amount
of time [4]. Particle Swarm Optimization (PSO) and the
Firefly algorithm were employed by the authors in [5] to put
the optimal controller. These population-based meta-heuristic
algorithms accept a set of goal functions and return the
position that meets those objectives the best. The researchers
in [6] offered a multi-critical method comparison of solution
techniques using different swarm optimization algorithms. The
methods utilized identify where the controllers should be
located and how switches should be distributed, as well as
the approximate optimal number of controllers required to
service an SDN. In order to address the CPP and associated
load balancing issue in the SDN control plane, the authors in
[7] offer a novel strategy that reduces the load on the cen-
tral element while keeping the maximum distance constraint
between controllers.

The concept of Reliable Controller Placement (RCP) in
SDN was proposed by researchers in [8]. The authors de-
scribed this as a method for increasing control plane availabil-
ity and safeguarding it against single link and node failures
by continuously offering fail-over backup control pathways

ICOIN 2024

using resilient routing concepts. The authors provided two
methodologies and used Mixed Integer Linear Programming
(MILP). The initial approach focused on the delay from switch
to controller (SC) and made the assumption that switches and
controllers must be linked by two distinct control paths. RCP-
DCP, or RCP-disjoint control path, was the name given to this.
Switches were to be connected to two Different Controller
Replicas (RCP-DCR) via two different or discontinuous paths
according to the second technique. The RCP-DCP and RCP-
DCR techniques were created with the goal of enabling quick
and effective failover with little disruption. Both RCP-DCP
and RCP-DCR provided the same performance in the event of
link failures with an applicable strategy based on topological
features, characteristics, and controller count. RCP-DCP fared
better for node failures, protecting controllers from failures.

III. PRELIMINARIES

Unquestionably, the CPP is a crucial component in SDN
network design. Delays between nodes (switches) and the
appropriate controllers as well as delays within the controllers
themselves are the main factors limiting the best controller
placement. Numerous other factors are present that are unique
to particular networks or predetermined criteria.

The CPP is acknowledged as being NP-hard [9]. As a result,
the issue is quite complicated, and we suggest a heuristic
method to identify rather precise predictions of controller
placement. We approach this optimization problem by dealing
with and solving the following issues head-on:

1) controller placement designed to meet delay constraints;
2) to increase availability, shortest links are extracted from
a sub-graph using the Steiner tree idea, connecting every
node in the set of controllers;
3) selecting a highly reliable alternate routing method be-
tween controllers;
4) providing redundancy by giving each node two con-
trollers, and
5) cost of node-disjoint recovery pathways (restore paths)
for controller-to-controller connections that improve
availability.
This issue has several objectives by nature. To overcome the
aforementioned difficulty, we base our methodology on the
genetic algorithm approach.

A. CPP initial problem formulation

We model the Software-Defined Networking (SDN) data
plane as a graph G = (N, E), where N represents the set
of nodes (switches), and E represents the set of links. Each
link is denoted by its end nodes {i,j}. As in [10], we also
assume that the delay between two nodes, represented by d;;,
is assumed to be proportional to the shortest path between the
two nodes.

Here, we discuss two delay constraints in such scenario:

1) Switch-to-controller delay (D.): Each switch’s delay

from the controller that controls it cannot be longer
than a specified maximum value Dg.. To ensure effective

communication and control between the switches and
their accompanying controllers, this constraint is required.

2) Controller-to-controller delay (D.): Any two con-
trollers’ delay cannot be greater than a specified maxi-
mum value D... This constraint guarantees that the con-
trollers can successfully communicate with one another
for synchronization and coordination needs.

It is assumed that communication among controllers hap-
pens less frequently than communication among the switches
they control. Therefore, Dy is expected to be smaller than D,
(Dye < D¢) [11]. This suggests that decreasing the switch-to-
controller latency while yet keeping a respectable controller-
to-controller delay should be given top priority when placing
controllers.

B. Inter-controller primary path sub-graph - Steiner Tree

A possible sub-graph is inferred from a controller placement
solution, resulting in a real-time connection of the shortest
routes between all controllers. As in [12], we use a Steiner
graph to represent our sub-network and assume that its ter-
minal nodes are the controllers. When connecting many SDN
controllers, the Steiner tree is used to make sure that their
major paths are on the least expensive links in order to
achieve the greatest inter-controller delay value D... Using
the Steiner tree reduces the overall cost of communication
between network controllers and enables effective routing.

Our suggested approach establishes workable additional
protection paths among the controllers and enables highly
available controller backup paths to be developed, both of
which further boost inter-controller communication availabil-
ity. The existence of backup paths ensures that communication
between controllers continues in the event that the primary
paths encounter problems, cuts, or failures. For every two
controllers, a node-disjoint backup route is computed. As a
result, the backup path does not have to use the Steiner tree and
shares no nodes with the primary path other than the source
and destination controllers.

The network is better prepared to manage breakdowns
or performance issues by incorporating both primary and
node-disjoint backup pathways. This strategy increases the
overall fault tolerance and reliability of the SDN control plane,
ensuring that controllers can communicate continuously under
any conditions. It is considered that the only factor influencing
each network link availability value is the link distance. The
possibility that a link will be active at any given time can be
determined by looking at its availability, which also serves as a
reliable indicator. According to the concept of distance-based
availability, a link’s dependability increases linearly with its
physical length.

Our objective is to ensure that the end-to-end availability
between any two controllers is at least a given value K, which
is five nines (0.99999). If the availability of the primary and
backup paths is less than five nines, compute and assess addi-
tional restore paths for that particular controller-to-controller
link [13]. Path redundancy is a crucial strategy for improving
end-to-end availability.

635

This ensures that the overall availability between any two
controllers meets or surpasses the desired criterion of five nines
by identifying and incorporating additional redundant paths
that are node-disjoint.

C. Switch to Controller Connection

Our approach primarily focuses on locating and assigning
to the closest controller for every given switch, which requires
satisfying the minimal delay D, condition. In addition, our
secondary goal is to ensure an average of four nines (0.9999)
for all switch-controller connections.

In order to achieve this, we identify a second controller
for each switch in addition to its primary controller that is
located within a range that will result in an average switch-to-
controller availability of four nines throughout the network.
This approach ensures that even if the primary controller
fails, the switch can maintain its connection with a secondary
controller, maintaining the desired level of availability in the
network. Our approach attempts to increase overall network
performance and resilience by maximizing switch-controller
connections, prioritizing the closest controller, and guarantee-
ing a secondary controller within the specified range.

IV. METHODOLGY

As an adaptive technique for resolving challenging issues
and problems, genetic algorithms (GA) are increasingly fre-
quently employed in engineering teaching and learning. To
resolve the optimization issue that corresponds to the CPP
in SDN, we make use of the GA. Our GA starts off in the
context of the CPP by initializing a population of poten-
tial controller placement solutions, which are symbolized as
chromosomes. The number and locations of the controllers
in the network topology are encoded on each chromosome.
Based on specified parameters, the fitness function assesses
the quality of each solution. By using selection, crossover, and
mutation operations, the GA refines the population iteratively.
The crossover and mutation operators create new offspring
solutions by mixing and perturbing the genetic material of
the parent chromosomes, while the selection process favors
solutions that are more fit. The GA moves closer to an
ideal or nearly ideal solution for the CPP by utilizing and
exploring the search space. The final solution provides the best
trade-off between the objectives specified. The deployment
of controllers in actual SDN networks can be guided by our
Pareto frontier, which essentially focuses around minimizing
latency or delay restrictions and maximizing controller and
node availability. We outline below the steps in our algorithm.

1) The first step of our approach is to consider every con-
ceivable controller count for the network. For instance,
we explore the option of 1 to 5 controllers in a network
of 5 nodes. The objective, however, is still to determine
the bare minimum of controllers required to satisfy the
specified restrictions. We initialize a list of solutions
accordingly.

2) We create the initial population for the specified number
of controllers.

3) We determine whether each potential solution candidate
complies with the limitations. Switch-controller delay
cannot exceed Dy, while inter-controller delay limit is
D.. We postulate that the delay between a switch and its
managing controller must not surpass a specified max-
imum threshold Dy, < D, given that communication
between the controllers and the switches they manage
occurs more frequently than inter-controller communica-
tion. The constraints are as follows. There should be two
controllers for each node, each at a maximum distance
from it of D,.. This is the primary controller that a node
is connected to. The secondary node is introduced for
node-controller reliability. The second controller needs to
be placed so that there is at least a four-nine availability
between the node and any one of the two controllers.
Any two controllers cannot be positioned further than D,
apart.

4) Calculate the fitness of each individual.

5) Through selection, crossover, and mutation, update the
GA population.

6) In order to meet the GA halting criterion, repeat Steps 2
through 4 as necessary.

7) Add the resulting solution to the list of solutions for the
controllers under consideration.

8) Repeat Step 2 through to 7 for all possible numbers of
controllers.

9) Select the smallest group of controllers that satisfies each
of the taken into account constraints.

A. Initialization and Population Generation

The development of a population to serve as the controllers
for the specified network is considered in the first step of
our suggested methodology. Choosing the best network node
locations to host controllers is the objective. In the initial popu-
lation, each chromosome corresponds to a functional controller
placement scheme. A genetic technique with binary coding is
used to achieve this. One technique of controller selection is
represented by each chromosome, which is represented as a
binary array with a length equal to the number of network
nodes (each bit represents a network node). As opposed to
zeros, which represent ordinary nodes, bits in the array with a
value of 1 show that the corresponding node has been assigned
as a controller. The fitness of each chromosome is calculated
once a random population is produced. Our fitness function is
as follows:

Fitness = (04 X Nrestore paths T B x D)

where o and [are weighting factors that determine the
relative importance of the number of restore paths and the
average delay in the optimization. Since the objective is to
minimize the consumption of network link resources, we
provide « a greater value. Restore paths consume network link
resources. According to Niesiore paths>» the quantity of restore
paths necessary to guarantee a specific level of connection
availability for controller to controller connections, and D,

636

the typical communication delay between network nodes (S-C
and C-C), these numbers are used.

B. Selection, Crossover, Mutation and Termination

The Roulette-Wheel method [14] is used to choose indi-
viduals, with the likelihood of selection rising as the fitness
value of each chromosome falls. We produced new offspring
from the chosen parents using the single-point crossover.
Afterwards, mutation is carried out to augment offspring. We
gave each gene on a chromosome a mutation chance in order
to perform the mutation over a person. The mutation rate
is then contrasted with each gene probability. We swap the
gene if the likelihood of a mutation is lower than the rate.
A chromosome’s controller placements are always regulated
to correspond to the controller numbers being taken into
account for the iteration. We use a mutation probability of
0.1. A genetic algorithm’s termination condition is either after
it completes a predetermined number of iterations or when
the population does not continue to improve. Our termination
condition is set at 100 iterations.

V. EXPERIMENTATION
A. Dataset & Test Network

We conduct tests and simulations on a few networks from
the Survivable Network Design library in order to evaluate and
validate the functionality and performance of our heuristic GA-
based model. A well-established library for designing resilient
fixed telecommunications networks is SNDIib [3].

The Germanyb0 network shown in Figure 1 is one of
many networks offered by genuine network service providers
and original equipment manufacturers (OEMs), which have
been built as benchmark networks in comprehensive research
initiatives.

Fig. 1. Topology of Germany50

B. Evaluation Measures

We assume that the high threshold delay constraints Dy, and
D, are expressed as a percentage of the graph diameter D,
(longest shortest path between two nodes) for each network
[11]. This foundation led us to conclude that the maximum
switch-to-controller (SC) delay value for the German50 net-
work is Dy, = 35% for the initial iteration, followed by
40%, 45% and 50%. For each round of experiments, the
maximum controller-to-controller (CC) delay was estimated

to be D,. = 70%, 75% and then 80%. By starting with
the smallest value that meets the specified delay conditions,
our technique for determining the ideal number of controllers
(C) is able to accomplish the desired results. Then, in order
to keep our network availability costs as low as possible,
we gradually increase C. However, it is important to think
about any potential disadvantages of having more controllers.
Increased inter-controller communication overhead can have a
detrimental effect on control plane performance and negate
the entire point of our CPP. This can happen when there
are a significant number more controllers. Our model gave
extremely good results, and we only sometimes had to pay
to build a controller-to-controller restore path or raise C to
reach our availability requirement. To help network operators
analyze the advantages and disadvantages of every potential
solution, we show how the trade-off between the number of
controllers and the related availability costs might be achieved.
Therefore, maintaining optimal control plane operations neces-
sitates finding the right balance between controller count and
network performance.

Both inter-controller communication and communication
between the data plane and control plane have precise needed
effective average availability values. The goal was to maintain
the delay constraints while achieving an effective average
availability value of A.. = 0.99999 and \;. = 0.9999 across
the entire network. By following these guidelines, we want
to keep the network highly reliable and resilient even in the
event of potential link or node outages.

VI. RESULTS AND ANALYSIS
A. Evaluation Results

We used Python and Networkx module [15] to implement
our working model. Both the Google Colab platform and
the Jupyter notebook were used for our simulation. Table I
shows the evaluation result. The table showcases the outcomes
obtained for various combinations of D,. and D, values. The
number of controllers is displayed in column *C”, starting at
the lowest permissible value that strives to satisfy all required
requirements and, in some cases, ending at a more ideal, least
expensive higher value. The ’Restore Paths’ column merely
lists the quantity of expensive extra restore C-C paths required
to satisfy the specified threshold availability requirement. The
last step is to further segregate the S-C and C-C columns
into three separate columns, each of which describes the
lowest, maximum, and average computed availability for both
communications. When a ’-> symbol appears in these columns,
it means that the instance is either infeasible, which means that
a suitable set of controllers cannot be found for the specified
maximum delay values, or that the heuristic failed to find a
workable solution that satisfies the constraints. Nevertheless,
a solution might exist.

B. Analysis

As depicted in Figure 1, we tested the 50-node Germany50
network. We found the largest optimal number of controllers
for the network when testing at a minimum S-C delay of 35%.

637

TABLE I
RESULTS FOR GERMANY50 NETWORK

Dge Dee | C | RestorePaths S-C C-C
Min A Max A Av A Min A Max A Av A

3#35% 0% | 4 2 0.99991 | 0.99999 | 0.99997 | 0.999993 | 0.999999 | 0.999996
5% | 4 2 0.99991 | 0.99999 | 0.99997 | 0.999993 | 0.999999 | 0.999996

80% | 3 2 0.99989 | 0.99999 | 0.99996 | 0.999993 | 0.999999 | 0.999996

3% 40% 70% | 3 1 0.99991 | 0.99999 | 0.99996 | 0.999994 | 0.999997 | 0.999995
5% | 3 0 0.99991 | 0.99999 | 0.99996 | 0.999994 | 0.999997 | 0.999995

80% | 3 0 0.99991 | 0.99999 | 0.99996 | 0.999994 | 0.999997 | 0.999995

3% 45% 70% | 2 0 0.99949 | 0.99995 | 0.99978 | 0.999993 | 0.999993 | 0.999997
3 0 0.99988 | 0.99999 | 0.99994 | 0.999999 | 0.999999 | 0.999999

5% | 2 0 0.99949 | 0.99995 | 0.99978 | 0.999993 | 0.999993 | 0.999994

3 0 0.99988 | 0.99999 | 0.99994 | 0.999999 | 0.999999 | 0.999999

80% | 2 0 0.99949 | 0.99995 | 0.99978 | 0.999993 | 0.999993 | 0.999996

3 0 0.99988 | 0.99999 | 0.99994 | 0.999999 | 0.999999 | 0.999999

3* 50% 70% | 2 0 0.99959 | 0.99999 | 0.99988 | 0.999998 | 0.999999 | 0.999999
3 0 0.99981 | 0.99999 | 0.99991 | 0.999999 | 0.999999 | 0.999999

5% | 2 0 0.99959 | 0.99999 | 0.99988 | 0.999998 | 0.999998 | 0.999998

3 0 0.99981 | 0.99999 | 0.99991 | 0.999999 | 0.999999 | 0.999999

80% | 2 0 0.99959 | 0.99999 | 0.99988 | 0.999998 | 0.999998 | 0.999998

3 0 0.99981 | 0.99999 | 0.99991 | 0.999999 | 0.999999 | 0.999999

It cost the restoration of two paths in order to comply with all
of our network limits. Figure 2 shows a visual of this. With
Dy, = 40%, only the test case with corresponding D.. = 70%
incurred a cost of restoring 1 path, otherwise requirements
were met at zero cost. The Germany50 network highlights the
notion that too many controllers in any network might defeat
the CPP objectives in SDN. In order to achieve the needed five
nines availability, a densely connected control plane created by
a high number of controllers may require restore path costs.
To achieve our four nines goal for S-C connections, a slight
increase in the number of controllers at Dg. = 45% and 50%
was also required. All other constraints were satisfied with the
initial computed minimum.

C. Comparison

In order to determine the benefits of our methodology, we
compare our work and results to those of related studies in
this section. Santos et al. in both [16] and [12] and the work
by [8] are such. The strategy in [16] treats the inter-controller
availability and geodiversity guarantees of the controller place-
ment problem as two separate bi-objective joint optimization
problems. The geodiversity constraints boost resistance to
disaster-related failures, while the availability assurances point
to a subgraph with links that can be upgraded at a cost. In [16],
the authors took into account the issue of controller placement
within delay bounds while assuming improved availability
subgraphs between the controllers through upgrades at pre-
determined costs. They used another approach and performed
simulations on networks that were similar.

@ regular node/switch

@® C=controller

regular link path

Steiner Graph
Restore Path

Restore Path via Steiner Tree

Fig. 2. Germany50 Network with Steiner Graph shown in solid lines for
C=4, Dsc = 35%, Dcc = 75% and Restorepaths = 2; shown in BLUE

1) Runtime: Our research on the Germany50 network,
which has 50 nodes, can be compared to the research cited
in [8]. Because both of these papers place a strong emphasis
on control path availability and reliability, we chose this one
to be our comparative benchmark. We contrast our results
with the RCP-DCP model. Despite taking into account other
restrictions like the overall network delay, our execution time
is still quite competitive. Our approach calculates an initial
controller count of two for test cases where D, is set at 45 and
50 percent, and it also determines an incredibly quick average

638

Runtime Comparison

37.113

35 —e—Number of Controllers = 2
~—a=Number of Controllers = 3

~o—Number of Controllers = 4

= 22.312
Q
§ 20
=
15
9.63
10
. 10.274
6.742 __—
5 _—
—
3.463
[}
Our work RCP-DCP [4]

Fig. 3. Runtime comparison - Germany50

runtime of 9.631 seconds. This contrasts with the RCP-DCP
model’s runtime of 37.113 seconds. With a controller count of
three, we further reduce the time to 6.742 seconds from 22.312
seconds to meet S-C availability goal. The controller count of
four, determined for Dgc set at 35%, is also reached after 3.463
seconds, as opposed to the 10.274 seconds required by RCP-
DCP. Longer durations are required for RCP-DCP because,
despite the model’s similarity to the other model in [8], there
is an additional requirement that the identities of the primary
and backup controllers be the same.

2) Availability vs Number of controllers: We contrast the
findings from our technique with those from [16] and the two
approaches, RCP-DCP and RCP-DCR, from [8].

NUMBER OF CONTROLLERS VS. S-C AVAILABILITY
AND C-C AVAILABILITY
0.999

0.999999 0.999991 0.99
1 5
.99998 0.99 0.999
0.9
0.8 4
0.7
3
) 2 2 2
0.3
0.2 1
0.1
0
[} 0
RCP - DCP [4] RCP - DCR [4]

Santos [58]
m C-C availability

o
o
w

AVAILABILITY
o
«

o
IS

N
NUMBER OF CONTROLLERS

Our work

S-C availability m Controllers

Fig. 4. Availability comparison

In the similar situation, where Dg. = 40% and D.. = 70%,
all compared articles agree that two controllers are the ideal
number. Without taking into account the switch-to-controller
(S-C) availability, the authors of [16] achieve a controller-
to-controller (C-C) availability of five nines. Additionally,
for both C-C and S-C availability, RCP-DCP and RCP-DCR
techniques are only able to achieve two and three nines,

respectively. By increasing the number of controllers to three
and introducing the necessity of a trade-off, our strategy
enables the accomplishment of five nines in C-C availability
and four nines in S-C availability, thereby promoting long-term
overall availability and cost effectiveness.

VII. CONCLUSION

The goal of this work was to significantly improve the
switch to controller and controller to controller link availability
while also optimizing the control plane design by placing
the controller where there will be the least amount of delay.
We outline an improved genetic algorithm methodology and
show a precise way to maximize the availability limitations
that already exist. To evaluate the trade-off between the
deployment of controllers and the price of raising certain node
link availabilities, we experimented on a 50-node benchmark

topology.
REFERENCES

[1] J. Shapiro, Genetic Algorithms in Machine Learning. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2001.

[2] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-
Gia, “Pareto-Optimal Resilient Controller Placement in SDN-based Core
Networks,” Tech. Rep. [Online]. Available: http://www3.informatik.uni-

[3] S. Orlowski, M. Pioro, A. Tomaszewski, and R. Wessily, “Sndlib 1.0 -
survivable network design library,” Networks, vol. 55, no. 3, pp. 276—
286, 20009.

[4] M. Patnaik and A. M. Adrian, “A perspective depiction of heuristics in
virtual reality,” in Cognitive Big Data Intelligence with a Metaheuristic
Approach, 2022, pp. 101-116.

[5] K.S. Sahoo, A. Sarkar, S. K. Mishra, B. Sahoo, D. Puthal, M. S. Obaidat,
and B. Sadun, “Metaheuristic solutions for solving controller placement
problem in SDN-based WAN architecture,” in Proceedings of the 14th
International Joint Conference on e-Business and Telecommunications,
2017, pp. 15-23.

[6] A. Vybornova, “A Survey on the Swarm Intelligence Approaches to
Controller Placement Problem in the Software Defined Networks Design
and Optimization,” Telecom IT, vol. 8, no. 4, pp. 83-92, 12 2020.

[71 H. Sufiev, Y. Haddad, L. Barenboim, and J. Soler, “Dynamic SDN
controller load balancing,” Future Internet, vol. 11, no. 3, 2019.

[8] P. Vizarreta, C. M. Machuca, and W. Kellerer, “Controller placement
strategies for a resilient sdn control plane,” in 2016 8th international
workshop on resilient networks design and modeling (RNDM). 1EEE,
2016, pp. 253-259.

[91 B. Heller, R. Sherwood, and N. Mckeown, “The controller placement

problem,” Computer Communication Review, vol. 42, no. 4, pp. 473—

478, 2012.

D. Santos, T. Gomes, and D. Tipper, “Software-Defined Network Design

driven by Availability Requirements,” in /6th International Conference

on the Design of Reliable Communication Networks (DRCN), 2020.

[11] N. Perrot and T. Reynaud, “Optimal placement of controllers in a re-

silient SDN architecture,” in Proceedings of the 12th International Con-

ference on the Design of Reliable Communication Networks (DRCN),

2016, pp. 145-151.

D. Santos, J. P. Vidal, T. Gomes, and L. Martins, “A Heuristic Method

for Controller Placement and Enhanced Availability between SDN

Controllers,” in Proceedings of the 11th International Conference on

Network of the Future (NoF), 2020, pp. 82-90.

[13] F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability in

software-defined networks,” in Proceedings of the 3rd workshop on hot

topics in software defined networking, 2014, pp. 31-36.

M. Melanie, An Introduction to Genetic Algorithms. MIT Press, 1996.

“NetworkX — NetworkX documentation.” [Online]. Available:

https://networkx.org/

D. Santos, T. Gomes, L. Martins, and J. P. Vidal, “Resilient sdn intercon-

troller network design under availability requirements and geodiversity

constraints,” in 2022 18th International Conference on the Design of

Reliable Communication Networks (DRCN). 1EEE, 2022, pp. 1-8.

[10]

[12]

[14]
[15]

[16]

639

