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Abstract—Multi-access edge computing (MEC) has emerged as
an effective approach for enhancing system quality. Nevertheless,
the movement of users and variations in demand for the service
might lead to an increase in system delays. This article investi-
gates the issue of service migration, with a particular focus on the
factors of mobility and service availability. Specifically, we model
the Markov Decision Process (MDP) problem. To make effective
service migration decisions, we propose a deep reinforcement
learning (DRL) model. Furthermore, a recurrent neural network
(RNN) is implemented in order to enhance model performance by
predicting user movement. The experimental results demonstrate
the effectiveness of the proposed method in reducing the system
delay.

Index Terms—MEC, service migration, Markov decision pro-
cess, Deep reinforcement learning, Recurrent neural network.

I. INTRODUCTION

Multi-access Edge Computing (MEC) is proposed to pro-
vide services to resource-constrained devices. The deployment
of services in close proximity to end users offers a potential
solution to address system latency issues. However, due to the
constantly changing demands of users, the requested services
may not be implemented on the local MEC server. Hence,
many studies [1], [2] have been conducted to enhance the
efficiency of service migration inside the MEC system. Nev-
ertheless, optimal models are formulated with the assumption
that customers neither move nor neglect the variety of service
types. This results in the approaches being challenging to
implement in real-world environments.

In this study, a service migration framework is proposed for
the MEC system. Specifically, we formulate an optimal model
with the purpose of minimizing system latency. In contrast
to other studies, the optimal model takes user mobility and
the variety of service categories into account. In addition,
we utilize a recurrent neural network (RNN) that predicts
the future location using historical movement data of mobile
users. The optimization problem is then transformed into an
MDP model and solved using proposed DRL model. Finally,
comprehensive experiments are performed to investigate the
performance of the framework.

II. PROBLEM FORMULATION

A. System Model

The system model is illustrated in Figure 1. The system
comprises a central cloud server and M MEC servers, repre-
sented as {1, ...,M}. The cloud server covers a comprehensive
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Fig. 1. Proposed MEC system

range of services, while each MEC server is constrained by
resource limits and can only deploy a certain number of
services. We denote the set of N users as {1, ..., N}, who are
making requests to services that are deployed on MEC servers.
It is noteworthy that these users can move between various
coverage zones across multiple MEC servers. In situations
where users attempt to change locations or request services
that are inaccessible on MEC servers, the system is required
to facilitate the migration of the requested service to the
nearby MEC server. The cloud server has the responsibility
of gathering comprehensive system information and making
decisions on service migration.

We investigate T time slots in this study. The set of K
available services of MEC server m in time slot t is denoted
as Sm(t) = {sm1 (t), sm2 (t), ..., smK(t)}. In particular, service
smk (t) is represented as a tuple

smk (t) = {amk (t), bmk (t)} (1)

where amk (t) and bmk (t) denote the type and size of service
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smk , respectively. On the other hand, user n generates only
one request which is denoted as follows.

rn(t) = {sn(t), dn(t), cn(t)} (2)

where sn(t) is the type of service, whereas dn(t) and cn(t)
represent the size of data and computational requirement,
respectively.

B. Computation Delay

The following equation is used to calculate the latency in
servicing MEC server s caused by the processing request
rn(t):

T s
n(t) =

dn(t)cn(t)

fs
n(t)

, (3)

where fs
n(t) represents the allocated computing resources for

the execution of request rn(t).

C. Communication Delay

We consider the transmission latency from both transmitting
requests and migrating services between servers. Due to the
negligible size of the response data, the delay induced by
obtaining the request result is neglected.

MEC servers are accessed by users through a wireless
connection. The wireless bandwidth between user n and local
MEC server l are denoted as Bn,l(t). The transmission power
for user n and Gaussian noise power spectrum density are
denoted as Pn(t) and N0, respectively. In time slot t, the
wireless data rate Rn,l(t) between the user n and local MEC
servers l are formulated as follows [3]:

Rn,l(t) = Bn,l(t) log2
(
1 +

Pn(t)Gn,l

N0Bn,l(t)

)
, (4)

where Gn,l is the wireless channel gain [4].
In wired network, the link bandwidth is proportional to the

data transmit rate. Therefore, for time slot t, the data rate
Rl,s(t) of the wired MEC-MEC connection is as follows:

Rl,s(t) = Bl,s(t), (5)

where Bl,s(t) denotes the allocated channel bandwidths for
the MEC-MEC connections.

The communication delay from user n to local MEC server
l is denoted by Tn,l(t), while the wired communication
delay between MEC servers is denoted by Tl,s(t). The delay
are determined in accordance with equations (4) and (5) as
follows:

Tn,l(t) =
dn(t)

Rn,l(t)
, (6)

Tl,s(t) =
dn(t)

Rl,s(t)
. (7)

D. Migration Delay

When a user changes location, the system autonomously
determines whether to move the service in order to minimize
the duration of the service interruption. Nevertheless, moving
services constantly has the potential to result in an increase
in system latency. Hence, through the utilization of the ser-
vices available from MEC servers, the system can effectively
mitigate the redundant service migration. Hence, the latency
resulting from the procedure of migrating a service from one
MEC server to another is defined as follows:

Tm
p,s(t) =

{
0 for dn(t) ∈ Ss(t),
bmk (t)
Rp,s(t)

otherwise, (8)

where bmk (t) and Rp,s(t) denote service size and the data rate
of wired connection between the previous serving MEC server
p to the new serving MEC s in time slot ts, respectively.

E. Problem formulation

The main goal of this research is to reduce the latency of
the entire system, taking into account constraints on resources
and time-sensitive requirements. The objective function is as
follows:

min
T∑

t=1

N∑
n=1

1

T

1

N

[
T s
n(t) + Tn,l(t) + Tl,s(t) + Tm

p,s(t)
]
. (9)

Additionally, the following constraints are presented:

C1 : 1 ≤ s ≤ M,

C2 :
N∑

d=1

Bn,l ≤ Bmax,

C3 : FAs(t) ≥
N∑

n=1

fs
n(t) , f

s
n(t) ≥ 0,

Constraint C1 ensures that only one of the MEC servers
may be chosen by the migration decision. Constraint C2 states
that the aggregate bandwidths between every user and the
local MEC server l must not reach the utmost allowed. The
computing resources that are currently available on the MEC
server s are denoted as FAs(t). As mentioned in Constraint
C3 [3], the total of all computing resources allocated to each
task cannot surpass the current resource availability.

III. METHODOLOGY

This section presents a proposed methodology for tackling
the service migration issue. First, an RNN model is used
to predict the forthcoming user trajectory. Subsequently, the
optimization issue is formulated as an MDP. Finally, the prox-
imal policy optimization (PPO) framework [5] is introduced
to make optimal decisions on service migration.
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A. Mobility Prediction
A multi-input, multi-output recurrent neural network is

utilized for the purpose of predicting movement of users. This
approach not only leverages data from all users concurrently
but also eliminates the need of constructing distinct prediction
models for each users. The Convolutional Long Short-term
Memory (ConvLSTM) [6] model shown in Fig. 2 is used in
this investigation. The effectiveness of ConvLSTM in extract-
ing spatiotemporal information is enhanced by its combination
with convolutional blocks.
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Conv Conv Conv
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x
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Fig. 2. Convolutional Long Short-term Memory block

The input to the model consists of the spatial locations of
all users at tp previous time steps. Upon completion of the
training process, the model provides the location of all users
at a certain time tf , which is a specified number of time steps
into the future. Figure 2 illustrates the architectural framework
of the mobility prediction model.
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Fig. 3. Mobility Prediction

B. MDP-based Service Migration
In order to use DRL for the purpose of addressing the

optimization issue, it is required to define five key components
of the MDP. These components are presented as follows.

• State Space:

st = {M(t), N(t), B(t)},

• Action Space: at = S(t) where S(t) represents the MEC
servers that are available to handle user requests.

• State transition probability: P = p(st+1|st, at).
• Reward function: The reward rt indicates the instanta-

neous incentive obtained for executing action at while
in state st. Minimizing latency is the goal of the equa-
tion (9).

rt = −
N∑

n=1

1

N

[
T s
n(t) + Tn,l(t) + Tl,s(t) + Tm

p,s(t)
]

(10)

• Discount factor: γ ∈ [0, 1].

C. PPO algorithm

This research adopts the PPO framework, which is based on
the Actor-Critic approach. The primary advantage of a PPO
algorithm is its capacity to effectively manage the trade-off
between exploration and exploitation, while also guarantee-
ing stability and consistent enhancements to the policy. The
architecture of PPO is shown in Fig. 4.
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Fig. 4. Proximal Policy Optimization architecture

This method includes 3 steps as follows:
• Environment Interaction: interact with the environment to

collect of trajectories. These trajectories are used for both
policy evaluation and policy optimization.

• Policy evaluation: train the critic network with the objec-
tive of minimizing the error between the estimated and
actual returns. The primary aim is to enhance the accuracy
of the value function in approximating the actual expected
result.

• Policy optimization: optimizing the actor network by
maximizing the goal function.

IV. EXPERIMENTS

Experiments is conducted to evaluate the performance of the
proposed framework in making decisions in service migration.
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A. Experimental Settings

Experiments simulate the MEC system deployed on an area
of (4km, 4km). The cloud server is placed in centralized
location, while MEC servers are distributed more widely over
the given region. To evaluate the efficiency of the proposed
system, real mobility data sourced from San Francisco, USA
is used. Furthermore, Table I presents additional experimental
parameters.

TABLE I
ENVIRONMENT PARAMETERS

Parameters Value

The amount of MEC servers 16

The amount of mobile users 100

Range of MEC server computing resources (GHz) [0, 25]

Size of task data (MB) 1

Computational requirement (cycles/bit) 737.5

Channel bandwidth (MHz) 20

Wired transmission rate (MBps) [0, 150]

Noise power spectrum N0 (dBm/Hz) −174

B. Comparison Experiments

Fig. 5 presents experimental results examining the latency
of various service migration strategies. No Migration, which
always maintains the service on a specific MEC server, will
increase service latency when users move away from it. In
contrast, the average latency for Deep Q-Network (DQN)
and PPO is 1067 and 805, respectively. This demonstrates
PPO’s better capacity to balance exploration and exploita-
tion. Mobility-aware PPO achieves the lowest latency of 562
seconds. This result demonstrates that accurate prediction of
the user’s next location enhances the effectiveness of optimal
decision-making.
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Fig. 5. Performance Comparision

V. CONCLUSION

The study focuses on addressing the issue of mobility-aware
service migration in the MEC system. A recurrent neural
network is used for the purpose of forecasting the user’s future
location. Consequently, the optimization issue is formulated
as an MDP and then addressed using the PPO model. In the
future, our objective is to investigate the optimization of energy
consumption inside this system.

ACKNOWLEDGMENT

This work was supported in part by the Institute of Infor-
mation and Communications Technology Planning and Eval-
uation (IITP) funded by the Korean Government [Ministry of
Science and ICT (MSIT)], South Korea, through the Devel-
opment of Candidate Element Technology for Intelligent 6G
Mobile Core Network under Grant 2022-0-01015; and in part
by MSIT under the Information Technology Research Center
(ITRC) Support Program Supervised by IITP under Grant
IITP-2023-2021-0-02046.

REFERENCES

[1] S. Lu, J. Wu, J. Shi, P. Lu, J. Fang, and H. Liu, “A dynamic service place-
ment based on deep reinforcement learning in mobile edge computing,”
Network, vol. 2, no. 1, pp. 106–122, 2022.

[2] F. Tang, C. Liu, K. Li, Z. Tang, and K. Li, “Task migration optimization
for guaranteeing delay deadline with mobility consideration in mobile
edge computing,” Journal of Systems Architecture, vol. 112, p. 101849,
2021.

[3] Y. Chen, Z. Liu, Y. Zhang, Y. Wu, X. Chen, and L. Zhao, “Deep
reinforcement learning-based dynamic resource management for mobile
edge computing in industrial internet of things,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 7, pp. 4925–4934, 2021.

[4] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, pp. 587–597, 2018.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[6] X. SHI, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c.
WOO, “Convolutional lstm network: A machine learning approach for
precipitation nowcasting,” in Advances in Neural Information Processing
Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
Eds., vol. 28. Curran Associates, Inc., 2015.

659


