
Reinforcement Learning based Matching for
Decentralized Task Offloading in Fog Computing

Networks
Hoa Tran-Dang, Dong-Seong Kim

Abstract—This paper proposes an algorithm called RL-
MATCH for performing the distributed task offloading in the
fog computing networks based on the matching theory and
reinforcement learning. Fundamentally, RL-MATCH aims to
match each task node (TN) having computation needs with
each helper node (HN) with available computing resource for
task offloading realization. Given the dynamic of IoT and fog
computing environment featured by the time varying of task
requirement and resource states, online learning is needed to
estimate the network context as well as construct preference
relations for the two sides of matching game. We, therefore
propose to use Thompson Sampling (TS) method for this bandit
learning problem to acquire better exploitation and exploration
trade-off, therefore allowing TNs to achieve the informed pref-
erence relations of HNs quickly. Extensive simulation results
demonstrate the potential advantages of the TS based learning
over the ϵ-greedy and UCB based baselines.

Index Terms—Fog computing network, multi-armed bandit,
Thompson sampling, decentralized offloading, stable matching.

I. INTRODUCTION

Fog computing has been introduced and integrated widely
in the practical IoT and cyber-physical systems (CPS) [1],
[2], [3]. As an extension of cloud computing, fog computing
platforms placed between the cloud layer and user equipment
(UE) layer in the systems also provide the cloud-like services
(i.e., IaaS, PaaS, SaaS) to the UEs. In this context, devices with
integrated fog computing platforms called fog nodes (FNs)
can process and offload most tasks requested by the UEs on
behalf of the cloud servers [4], thereby allowing the systems to
achieve the improved performances in terms of service delay,
energy saving, and service cost [5].

However, to realize these benefits of fog computing
paradigm, there requires efficient task offloading operations
to overcome inherent challenges in the fog computing envi-
ronment such as the heterogeneity of fog computing devices,
various types of computational tasks with different quality of
service (QoS) and quality of experience (QoE) requirements
[6].

There are a large number of centralized optimization tech-
niques and algorithms proposed in the literature to provide
optimal offloading solutions [7]. These approaches require
a centralized control to gather the global system informa-
tion, thus incurring a significant overhead and computation
complexity of algorithms especially in case of density and
complicated heterogeneity of fog computing environment [8].

The aforementioned limitations of optimization have lead to
a second class of game theory based offloading solutions that
can avoid the cost-intensive centralized resource management
as well as substantially reduce the complexity of algorithms
[9]. However, classical game theoretical algorithms such as
best response require some information regarding actions of
other players [10]. Correspondingly, many assumptions are
introduced in the game theory based algorithms to simplify
the system models that, in some case, are impractical.

Recently, matching theory has emerged as a promising
technique applied to derive distributed task offloading algo-
rithms [11] that significantly can reduce the service latency in
the fog-based systems. More importantly, the matching-based
approaches have potential advantages over the optimization
and game theory based solution owing to the distributed and
low computational complexity algorithm [12], [13].

However, most of aforementioned solutions assume the
information regarding the resource states of fog computing
nodes are known a priori, which is not realistic in many
practical applications. For example, the resource demand-side
FNs called task nodes (TNs) are likely to be uncertain about
the computing capability (i.e., CPU frequency, queuing delay)
of resource supply-side FNs (i.e., helper nodes (HNs)) at
time of offloading requesting since it is varying over time.
Therefore, to efficiently offload the tasks in an online manner,
the TNs must interact constantly with the HNs to learn their
unknown computing resource status.

Multi-armed bandit (MAB) is a common approach to mod-
eling this type of learning process, which aims to solve
the exploitation and exploration dilemma [14]. Several algo-
rithms including ϵ-greedy, upper confidence bound (UCB), and
Thompson sampling (TS) are proposed for the player (i.e.,
learner) to select the optimal arm, which offers the highest
cumulative reward [15]. Basically, the ϵ-greedy algorithm is
simple to implement with low complexity but heavily relying
on the random choice, thus occurring the long convergence.
TS is Bayesian method [16] in which the player keeps a
posterior distribution over the expected arm rewards, and at
each round takes a sample from each arm’s posterior, and
then, plays the arm with the largest sample. Reward observed
from the played arm is then used to update its posterior. This
sampling strategy allows the arm to frequently select the arms
whose probabilities of being optimal are the highest based on
their posteriors and to occasionally explore inferior arms to

686979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

refine their posteriors. Meanwhile, the UCB strategy is to play
the arm with the highest UCB index to trade-off exploration
and exploitation, which is usually composed of sample mean
reward of an arm plus an exploration bonus that accounts
for the uncertainty in the arm’s reward estimates [17]. Unlike
TS, performance of this type of policies heavily rely on the
confidence sets used to compute the exploration bonus. This
together with the superior performance of TS evaluated in
numerous applications [18] motivate us to investigate a TS
based learning for our problem.

In these regards, this paper aims to develop an online
task offloading algorithm abbreviated as RL-MATCH for the
dynamic fog computing-enabled systems based on MAB learn-
ing, which particularly use the TS technique to efficiently learn
the uncertainty of fog computing environment.

II. RELATED WORKS

Task offloading has recently gained popularity as a potential
approach to efficiently use distributed computing resources,
and several studies conducted in this area have proposed
efficient offloading solutions using different methodologies.

The work presented in [19] developed a code offloading
architecture with on-demand computing resource allocation
and concurrent task execution. To enhance the total energy
efficiency in homogeneous fog networks, the authors in [20]
specifically made the assumption that they had complete
knowledge of the system status. The offloading decision of
which node to offload optimally becomes an integer pro-
gramming problem and is challenging to solve under the
supposition that the tasks could not be divided arbitrarily [21].
Real-time information collection and response are essential
for making intelligent offloading decision in a fog-enabled
network [22]. Using the real-time statuses of the users and the
servers, such as the sizes of the compute queues, one efficient
task offloading technique should be able to quickly adapt to
the demanding dynamics in the environments. As a result, task
offloading is frequently a stochastic programming issue, and
the above-mentioned traditional optimization techniques with
deterministic parameters are no longer appropriate. Utilizing
the Lyapunov optimization approach is one option to resolve
this conundrum. Additionally, a game-theoretic decentralized
strategy was offered in [23] to provide independent offloading
decisions from each user. Accordingly, the task offloading is
structured as a game and followed the Nash equilibrium rather
than attempting to solve a challenging integer programming
issue.

All of the computation offloading strategies listed above
presupposed complete knowledge of the system characteris-
tics. In practical, these factors are sometimes unknown or just
partially known to the user. As an example, some values (also
known as bandit feedback) are only disclosed for the nodes
that are queried. The authors in [24] specifically considered
the calculation and communication delays of each task as a
posterior. Each device’s movement was thought to be unpre-
dictable. Offloading feed-backs are used in the reinforcement
learning-based offloading methods [25] to learn characteristics

like latency and energy cost. There will be a trade-off between
using the empirically best node as frequently as possible and
researching other nodes to uncover more lucrative activities
when the number of nodes that can be queried is constrained
owing to the limiting amount of resources that are available.
To tackle this trade-off, the ϵ-greedy approach, which is
commonly used in reinforcement learning [25] should be
used. This strategy, nevertheless, converges slowly and is non-
optimal.

The authors in [26] introduced D2CIT - a two-tier dis-
tributed strategy for offloading computing in an IoT context
with fog. They took into account SNs with time-sensitive
tasks needed to be computed within the predefined deadlines.
The high-level tasks will be divided into more manageable
subtasks by D2CIT, which will then create a DATG. For the
FN selection, they provided a greedy solution that separates
the job from the appropriate SNs. In a dynamic setting, they
develop an ϵ-greedy nonstationary MAB-based strategy for
automated subtask redistribution.Additionally, they contrasted
D2CIT with already existing solutions and demonstrated how
the suggested algorithm performs better in terms of latency
and speedup.

The study [27] examined a performance guarantee for an
effective online task offloading approach in a fog-enabled
network. A stochastic programming with delayed bandit feed-
back was defined and formulated since the expectations for
processing speeds vary rapidly at unknown time instants and
the system information is only accessible after completing
the related tasks. BLOT, an effective online task offloading
method based on the UCB policy, is developed to address this
issue. The simulation results show that the proposed BLOT
algorithm is capable of learning and selecting the appropriate
node to offload tasks in an online manner under non-stationary
conditions.

The work [28] presents the combination of learning and
matching to design a learning-matching algorithm for task
offloading and resource allocation in the vehicular fog comput-
ing (VFC) systems. Considering the uncertainty of information
of systems, the algorithm proposes a pricing based model
iterated over time slot to learn the uncertainty as well as handle
the matching conflict. Evaluated by extensive simulations,
the proposed algorithm can achieve bounded deviation from
the optimal performance without the availability of global
information.

III. SYSTEM MODEL

A. Fog Computing Network

In the general system architecture, a FCN consists of
multiple TNs and multiple HNs co-existing in an area to
support computing various types of tasks as shown in Fig. 1.
Without the loss of generality, this paper considers the FCN
with an equal number M of TNs and HNs. Define the set
of TNs and HNs as T = {T1, . . . , Ti, . . . , TM} and H =
{H1, . . . , Hj , . . . , HM}, respectively. FNs are heterogeneous
in terms of computing capability, storage, and connectivity

687

technology. In addition, we assume that all the FNs can
connect together through wireless links.

T1 T2

H1

H2 H3

T3

T4 T5

H4

H5

Task Node (TN)

Helper Node (HN)

Communication Link

1

Fig. 1: An illustrative model of FCN with two types of FNs
including TNs and HNs.

We adopt a time-slot model where the total time period is
divided into K discrete intervals, the set of which is denoted as
S = {1, . . . , t, . . . ,K}. At the tth slot, each TN i generates
a corresponding task Ti(t), which is represented by a tuple
Ti(t) = {Li(t),Γi(t), D

max
i (t)}, where Li(t) is the task

size (bits), Γi(t) is the computation complexity of task (CPU
cycles/bit), and Dmax

i (t) is the maximum permitted latency
for the task Ti at time slot t. The specification of task varies
across different slots. In addition, the tasks are assumed to be
split arbitrarily, thus each task Ti should be either allocated as
one whole piece to one neighboring HN or processed locally.

In the dynamic of fog computing environment, the com-
puting capability of a HN Hj is represented through CPU
frequency fj(t) (cycles/s), and CPU processing density ρj(t)
(cycles/bit), which are assumed to vary over different time
slots.

B. Problem Formulation

Denote the set of task offloading decisions between M TNs
and M HNs as α(t) = {αij(t)}, where each element is a
binary variable, i.e., αij(t) ∈ {0, 1}. αij(t) = 1 means that
the task Ti is decided to be offloaded by Hj in the time slot
t; αij(t) = 0, otherwise. Dij(t) is the total delay when Hj is
assigned to process Ti and is calculated as follow:

Dji(t) = δtxij (t) + δwj (t) + δpji(t), (1)

where δtxij (t) is the transmission delay, δwj (t) is the waiting
delay in queue of Hj(t), and δpji(t) is the processing delay
by Hj(t). Given the data rate Rij(t) (bits/s) between Ti and
Hj at time slot t, we can achieve δtxij (t) = Li(t)/Rij(t). The
processing delay is derived as:

δpji(t) =
Li(t)Γi(t)

fi(t)
. (2)

The waiting delay is measured by Hj as follow:

δwj (t) =
Qj(t)ρj(t)

fj(t)
, (3)

where Qj(t) is the queue length (bits) of Hj in the time slot
t.

For TNs, the objective of offloading their tasks to HNs is
to minimize the long-term average delay D, which is defined
as follow:

D = lim
K→∞

1

K

K∑
t=1

M∑
i=1

M∑
j=1

αij(t)Dij(t). (4)

Practically, the FNs are managed by different service
providers which aim at maximizing the revenue by providing
the best services (PaaS, IaaS, and SaaS) for task offloading
operations. Therefore, the preference relation of HN is based
on the pay-off that it receives to process the tasks. For each
Hj ∈ H, the cost to process a bit of task Ti is denoted as
cji. The total pay-off received by Hj when offloading Ti is
expressed as Cji(t) =

Dij(t)
Dmax

i
cjiLi(t). For HNs, the objective

of offloading their tasks from TNs is to maximize the average
pay-off C over time slots, which is defined as follow:

C = lim
K→∞

1

K

K∑
t=1

M∑
i=1

M∑
j=1

αij(t)Cji(t). (5)

Definitely, the task offloading optimization problem is for-
mulated as follows:

P: min
αij(t)

D & max
αij(t)

C

s. t. C1 : αij(t) ∈ {0, 1}, ∀{i, j, t} ∈ {T ,H,S},

C2 :

T∑
i=1

αij(t) ≤ 1, ∀j ∈ H, ∀t ∈ S

C3 :

H∑
j=1

αij(t) ≤ 1, ∀i ∈ T , ∀t ∈ S.

(6)

Here, the constraints C1, C2, and C3 guarantee that at each
time slot t, a TN’s task can be offloaded to only one HN, and
a HN can process at most one task of TN.

There are two difficulties in solve the above problem. First,
it is a stochastic programming problem. The exact information
about the delay Dij(t) is not available before the task Ti(t) is
completed. In addition, event if Dij(t) is estimated a priori,
this problem is still a combinatorial optimization problem and
the complexity is in the order of O(M2K). This is due to the
fact that the previous offloading decisions determine the queue
length in each HN and further affect the decisions of future
tasks.

688

IV. RL-MATCH ALGORITHM

A. OTO Matching Model for Offloading Problem

Given the constraints C2 and C3 of problem P, the task
offloading problem can be modeled as an one-to-one (OTO)
matching game between players of two sets: T and H, which
is defined as follow.

Definition 4.1: The OTO matching is a function M: T ∪H
→ T ∪H such that the three following constraints are satisfied:

• For any Ti ∈ T , M(Ti) ∈ H ∪ {Ti},
• For any Hj ∈ H, M(Hj) ∈ T ∪ {Hj},
• For any Ti ∈ T and Hj ∈ H, Ti = M(Hj) if and only

if Hj = M(Ti).
In the OTO matching model, each agent Ti can only be

matched with one agent Hj , and Ti remains unmatched if
M(Ti) = Ti. The objective of matching is to reach the stable
status for all pairs.

Definition 4.2: A matching M is pairwise stable if there is
no block pair (Ti, Hj).

Definition 4.3: (Ti, Hj) is a block pair for a matching M
if three following conditions are satisfied:

• M(Ti) ̸= Hj ,
• Hj ≻Ti

M(Ti),
• Ti ≻Hj

M(Hj),

where ≻Ti
and ≻Hj

represent two preference relations allow-
ing the TNs and HNs from each of the two sets to express
preferences over the opposite nodes.
Each node builds a ranking of other nodes in the opposite
side individually using this preference relation, and then
creating its own preference list (PL). With the full connected
FCNs, each node has a complete PL over the nodes on the
opposite side. Assume that each Ti ∈ T has a PL denoted as
P(Ti) = (H2, H4, · · · , Hj , · · · , HM , Ti). This means that Ti

prefers agent H2 to H4 (i.e., H2 ≻Ti
H4).

To achieve the PL, each node is based on its preference
values when matching with all the nodes of opposite set.
These values are usually determined by utility functions taking
account the objective of matching game. In this paper, for
each Ti, its preference value for Hj is quantified by an
unknown value xij ∈ [0, 1]. For two different Hj and Hj′ ,
xij > xij′ implies that Hj ≻Ti Hj′ . For the objective of
delay minimization, the preference value taking into account
the capability of HNs to processing the tasks serve as the
reward offered by HN. Furthermore, to limit the rewards to
the range (0,1), we use the sigmoid function and is calculated
as follow:

xij(t) =
1

1 + e−(Dmax
i (t)−Dij(t))

. (7)

Similarly, denote yji as the preference value of Hj for Ti.
For two different player Ti and Ti′ , yji > yji′ implies that Hi

prefers Ti to Ti′ . The ranking for the reference of each Hj is
known after it receives all the offloading requests sent from
players (TNs). We use Cji(t) to express the preference values
of Ti for Hj (i.e., yji(t) = Cji(t)). For any two tasks Ti

and Ti′ requested to be offloaded by a HN Hj , the preference
relation is as follow: Ti ≻Hj Ti′ if and only if yji > yji′ .

B. Algorithm Description

Due to the dynamic nature of fog computing environment
characterized by the time-varying capabilities of HNs and QoS
requirements of tasks, xij(t) are unknown a prior and must
be learned by MAB learning. In this context, TNs and HNs
plays roles as players and arms, respectively.

At each round r = 1, 2, ..., R of time slot t = 1, 2, ...,K,
each player Ti attempts to pull an arm Hj . When multiple
player attempt to pull the same arm, a matching conflict occurs
and only the player preferred most by this arm is accepted. If a
player Ti wins the matching conflict, it will receive a random
reward xij(t, r) derived from Equation 7. Otherwise, if failing
the conflict, Ti is unmatched in this round and receive no
reward, i.e., xij(t, r) = 0. Over R round, the average reward
Xij(t) received by Ti when attempting an arm Hj is estimated
as follow:

Xij(t) =

∑R
r=0 γ

rxij(t, r)∑R
r=0 γ

r
, (8)

where γ ∈ (0, 1) serves as the discount factor.
Algorithm 1 presents the procedures to implement the

preference learning and matching conflict handling.
The algorithm takes the player set T and arm set H as input.

For each player Ti and arm Hj , the algorithm maintains a Beta
distribution Beta(aij , bij) for the preference value. Initially,
the distribution is Beta(1, 1) corresponding to the uniform
distribution on [0, 1]. It will be later updated based on observed
feedback and tend to concentrate on the mean value Xij(t).
In round r of slot t, the algorithm samples an index θij(r)
from Beta(aij , bij) to represent the current estimation.

To avoid the frequent conflicts, each player constructs a
potential matching set to exclude arms that already reject it
in the previous round. We assume that the successful matched
players are public at the end of each round. However, players
can still simultaneously pull same arms for next round. To
address this issues, we incorporate a random delay mechanism
with hyper-parameter λ. Accordingly, each player first draws a
Bernoulli random variable πi(t) with expectation λ. If πi(t) =
0, Ti still attempts to pull the arms with the largest index in
the potential set; otherwise, it follows the last-round choice.

When all players decide which arm to pull in this round,
arms will determine which player to accept according o their
rankings. If player Ti wins the conflict, it updates the average
reward and the corresponding Beta distribution.

V. SIMULATION RESULTS AND EVALUATION ANALYSIS

A. Simulation Environment Configuration

We evaluate the proposed algorithms in the fog environ-
ments where the network size (2 × M) is 10 (5 TNs and 5
HNs). Table I summarizes the important parameters and values
for the simulation scenario, where U[x,y] indicates the uniform
distribution on interval [x, y]. In each scenario, we run all

689

Algorithm 1: RL-MATCH Algorithm
Input: Player set T , arm set H, parameter λ ∈ (0, 1).
Output: A stable matching M = {(Ti(K), Hj(K))}

1 Initialization: ∀{Ti, Hj} ∈ {T ,H}, random matching
at t = 0: M(Ti(0)) = Hj(0), aij = bij = 1.

2 for t = 1, 2, ...,K do
3 for r = 1, 2, ..., R do
4 for Ti ∈ T do
5 ∀Hj ∈ H, sample θij(t) ∼ Beta(aij , bij)
6 Independently draw πi(t) ∼ Bernoulli(λ)
7 if πi(t) = 0 then
8 Construct potential matching set of Ti

9 Pi(t) := {Hj : yji(t) ≥ yji′(t)} where
10 M(Ti′(t− 1)) = Hj

11 Pull Hj(t) ∈ argmaxHj∈Pi(t) θij(t)

12 else
13 Pull Hj(t) = M(Ti(t− 1))

14 if pi wins matching confict then
15 Hj(t) = M(Ti(t))
16 Ti received an instant reward xij(t, r)
17 dervied from Equation (7)
18 Update Xij(t) as Equation (8)
19 Draw ω(t) ∼ Bernoulli(Xij(t))
20 Update aij(t) ← aij(t) + ω(t)
21 Update bij(t) ← bij(t) + (1− ω(t))

22 else
23 M(Ti(t)) = Ti(t)
24 Ti received a reward xij(t, r) = 0
25 Update Xij(t) as Equation (8)

algorithms for K = 1000 time slots and all results averaged
over 100 independent runs. Given the network configuration,
we performed a large number of trial processes (10000 trials)
to measure the response delays (offloading delays) offered by
HNs. With the range of obtained offloading delays (0.087
to 0.45 s), we accordingly selected the maximum permitted
latency for all tasks as in the set {0.1, 0.2, 0.3, 0.4}(s) to
evaluate the proposed algorithms.

TABLE I: Parameters for simulation

Parameters Values
Network size (2×M) 10
Task size, L(t) U[1,15](KB)
Dmax(t) {0.1, 0.2, 0.3, 0.4} (s)
Data rate rj U[0.5,1](MBps)
Processing density of FNs, γ(t) U[500,1000] (cycles/bit)
CPU frequency of FNs, f(t) {1.0, 1.5, 2.0, 2.5} (GHz)

B. Evaluation Analysis
Since the most of the existing solutions focus on bandit

learning algorithm use ϵ-greedy and UCB, we compare our
results with these two techniques.

Fig. 2 depicts the average offloading delay achieved by
different bandit learning approaches (i.e., ϵ-greedy, UCB, and
proposed TS) over time slots. Notably, our TS-based BLM
algorithm can achieve the sub-optimal result compared to the
optimal solutions obtained when the information of network is
available. This presents the efficiency of the proposed bandit
learning using TS to deal with the dynamic environment of
fog computing networks.

0 200 400 600 800 1000

Time Slot

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

A
v
e
r
a
g
e

O
f
f
l
o
a
d
i
n
g

D
e
l
a
y

(
s
)

Matching with greedy learning

Matching with UCB learning

BLM with TS learning

Matching with Availble Information

Fig. 2: The average delay offered by three different bandit
learning based task offloading algorithms.

The TS-based learning technique presents its out-
performance over ϵ-greedy and UCB due to the principle
of posterior distribution estimation. Meanwhile, ϵ-greedy and
UCB tend to assign the best HNs to tasks in a greedy manner.
When the network experiences a large number of time slots,
the performance gap between the comparative algorithms are
smaller because the network achieves more stable states. In
addition, more observations collected over time slots allow
TN to select the optimal HNs efficiently.

Fig. 3 presents the probability of selecting the optimal HNs.

0 200 400 600 800 1000

Time Slot

0.0

0.2

0.4

0.6

0.8

1.0

R
a
t
i
o

o
f

O
p
t
i
m
a
l

S
e
l
e
c
t
i
o
n

UCB

Greedy

TS

Fig. 3: Ratio of optimal selection

The results show that the matching conflicts occurred during
the resource competition have a severe impact on the ratio

690

of optimal selection for the greedy and UCB algorithms.
Meanwhile, our proposed algorithm using TS technique and
especially the developed matching conflict avoidance mecha-
nism can efficiently handle the issues. It naturally incorporates
the uncertainty or stochasticity in the reward distribution by
sampling from a probability distribution. This helps balance
exploration and exploitation effectively. While the greedy
method tends to be overly exploitative, always choosing the
action with the highest estimated value, which may lead to
suboptimal decisions if the estimates are inaccurate. Finally,
UCB can be overly optimistic and might converge to subop-
timal actions.

VI. CONCLUSIONS

This paper introduces the TS-based bandit learning for
distributed task offloading in the dynamic fog computing-
based system. In principle, the algorithm applies the MAB
learning empowered by Thompson sampling method to effi-
ciently learn the uncertainty of fog computing environment,
thus allowing TN to select the optimal HN for task offloading
over time slots. Extensive simulation results demonstrate the
the proposed algorithm outperform the benchmark algorithms
using ϵ-greedy and UCB learning methods. The advantage of
TS method in the RL-MATCH algorithm opens potential di-
rection for extending the current works. For example, matching
models such as many-to-one and many-to-many matching can
be investigated in large-scale networks.

ACKNOWLEDGMENTS

This research was supported by the MSIT (Ministry of
Science and ICT), Korea, under the Grand Information Tech-
nology Research Center support program(IITP-2023-2020-0-
01612) supervised by the IITP (Institute for Information &
communications Technology Planning & Evaluation)”, and
Korea Research Fellowship Program through the National
Research Foundation of Korea (NRF) funded by the Ministry
of Science and ICT (RS-2023-00249687).

REFERENCES

[1] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, “Industrial iot data
scheduling based on hierarchical fog computing: A key for enabling
smart factory,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 10, pp. 4590–4602, Oct 2018.

[2] H. Tran-Dang, N. Krommenacker, P. Charpentier, and D.-S. Kim, “The
internet of things for logistics: Perspectives, application review, and
challenges,” IETE Technical Review, pp. 1–29.

[3] H. Tran-Dang, N. Krommenacker, P. Charpentier, and D. Kim, “Toward
the internet of things for physical internet: Perspectives and challenges,”
IEEE Internet of Things Journal, vol. 7, no. 6, pp. 4711–4736, 2020.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing - MCC 2012. ACM Press,
2012.

[5] H. Tran-Dang and D.-S. Kim, “FRATO: Fog resource based adaptive
task offloading for delay-minimizing IoT service provisioning,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 10, pp.
2491–2508.

[6] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing
for IoT: Review, enabling technologies, and research opportunities,”
Future Generation Computer Systems, vol. 87, pp. 278–289, Oct. 2018.

[7] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjec-
tive optimization for computation offloading in fog computing,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 283–294, 2018.

[8] G. Lee, W. Saad, and M. Bennis, “An online optimization framework
for distributed fog network formation with minimal latency,” IEEE
Transactions on Wireless Communications, vol. 18, no. 4, pp. 2244–
2258, 2019.

[9] Y. Yang, Z. Liu, X. Yang, K. Wang, X. Hong, and X. Ge, “Pomt:
Paired offloading of multiple tasks in heterogeneous fog networks,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 8658–8669, 2019.

[10] S. Durand and B. Gaujal, “Complexity and Optimality of the Best
Response Algorithm in Random Potential Games,” in Symposium on
Algorithmic Game Theory (SAGT) 2016, pp. 40–51.

[11] H. Tran-Dang and D.-S. Kim, “A survey on matching theory for
distributed computation offloading in iot-fog-cloud systems: Perspectives
and open issues,” IEEE Access, vol. 10, pp. 118 353–118 369.

[12] Tran-Dang, Hoa and Kim, Dong-Seong, “Disco: Distributed computation
offloading framework for fog computing networks,” Journal of Commu-
nications and Networks, pp. 1–11.

[13] H. Tran-Dang and D.-S. Kim, Cooperative and Distributed Intelligent
Computation in Fog Computing: Concepts, Architectures, and Frame-
works. Springer Nature Switzerland.

[14] H. Tran-Dang, S. Bhardwaj, T. Rahim, A. Musaddiq, and D.-S. Kim,
“Reinforcement learning based resource management for fog computing
environment: Literature review, challenges, and open issues,” Journal of
Communications and Networks, pp. 1–16.

[15] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and em-
pirical evaluation,” in Machine Learning: ECML 2005: 16th European
Conference on Machine Learning, Porto, Portugal, October 3-7, 2005.
Proceedings 16. Springer, pp. 437–448.

[16] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3-4, pp. 285–294.

[17] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–
256.

[18] O. Chapelle and L. Li, “An empirical evaluation of thompson sampling,”
Advances in neural information processing systems, vol. 24.

[19] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in 2012 Proceedings IEEE INFOCOM, pp.
945–953.

[20] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M.-T. Zhou,
“Meets: Maximal energy efficient task scheduling in homogeneous fog
networks,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 4076–
4087.

[21] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Transactions on Communications, vol. 65, no. 8, pp. 3571–3584.

[22] P. Yang, N. Zhang, Y. Bi, L. Yu, and X. S. Shen, “Catalyzing cloud-
fog interoperation in 5g wireless networks: An sdn approach,” IEEE
Network, vol. 31, no. 5, pp. 14–20.

[23] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983.

[24] T. Chen and G. B. Giannakis, “Bandit convex optimization for scalable
and dynamic iot management,” IEEE Internet of Things Journal, vol. 6,
no. 1, pp. 1276–1286.

[25] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for iot devices with energy harvesting,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1930–
1941.

[26] S. Misra, S. P. Rachuri, P. K. Deb, and A. Mukherjee, “Multiarmed-
bandit-based decentralized computation offloading in fog-enabled iot,”
IEEE Internet of Things Journal, vol. 8, no. 12, pp. 10 010–10 017.

[27] Z. Zhu, T. Liu, Y. Yang, and X. Luo, “Blot: Bandit learning-based
offloading of tasks in fog-enabled networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 12, pp. 2636–2649.

[28] H. Liao, Z. Zhou, X. Zhao, B. Ai, and S. Mumtaz, “Task offloading
for vehicular fog computing under information uncertainty: A matching-
learning approach,” in 2019 15th International Wireless Communications
Mobile Computing Conference (IWCMC), pp. 2001–2006.

691

