
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Plug&Play Scheme of GPIO Sensors/Actuators in
Linux Platforms

Chi-Hwa Song

Department of Information
Communication Engineering

Hannam University
Daejeon, Republic of Korea

sch@djtp.or.kr

Ji-Hoon Kyung
Department of Industrial &
Management Engineering

Hannam University
 Daejeon, Republic of Korea

kjh@hnu.kr

 Seongbae Eun
Department of Information

Communication Engineering
Hannam University

 Daejeon, Republic of Korea
sbeun@hnu.kr

Abstract—Linux platforms such as Raspberry-Pi are widely

used as development platforms for high-performance
sensors/actuators in IoT application development. Application
developers connect sensors or actuators to the GPIO port of
Raspberry-Pi and write applications that access them. If the
Plug&Play technique of GPIO sensors and actuators is provided,
the difficulty of application development will be reduced.
Existing Plug&Play techniques do not support Linux platforms,
especially GPIO sensors/actuators. This paper proposes a
method in which the device driver is automatically installed and
played on Linux when the sensor/actuator is plugged into the
GPIO port. By comparing and analyzing the method of this
paper with the existing method by exemplifying the structure
and device driver of the GPIO sensor, the method of this paper
was shown to be more cost-effective.

Keywords—Plug&Play, Raspberry-Pi, Linux,
Sensor/Actuator, GPIO Port

I. INTRODUCTION
IoT technology has established itself as a core technology

of the Fourth Industrial Revolution [1, 2], and various
sensors/actuators are utilized. The development of IoT devices
is to mount sensors or actuators on development platforms
such as Arduino [3] and Raspberry-Pi [4] and write device
drivers and applications for those sensors and actuators. At
this time, it is difficult for software application developers to
understand the hardware operation method of sensors and
actuators.

In the case of Linux [5], when I/O devices are plugged, the
driver of the device is mounted and played in the operating
system, which can reduce the development burden on
application developers. These Plug & Play technologies are
also used in UPnP (Universal Plug & Play) [6] for office or
home devices.

For example, the IEEE1451[7,8] standard is used as a
plug&play technology for sensors/actuators. The technology
is a method of plugging sensors or actuators into a
standardized network and then playing immediately. ETRI
and Hannam University's research team proposed a method
[9-12] in which a pre-manufactured device driver is
dynamically connected to the processor and played when an
individual sensor or actuator is plugged into the AVR
processor.

Based on the perception that existing Plug & Play
techniques for sensors and actuators are inappropriate for
application to the latest platforms like Arduino or Raspberry-
Pi, we proposed a new approach [13,14]. This method is
played by plugging the sensor/actuator into the USB of

Raspberry-Pi. The USB method is easy to supply power and
has a fast data transmission speed, but it has the disadvantage
of being more complex and expensive than GPIO ports.

In this paper, we present a technique in which the device
driver is automatically mounted and played on Linux over the
Internet when the sensor and actuator are plugged into
Raspberry-Pi's GPIO.

II. RELATED RESEARCH

A. Legacy Plug&Play Schemes
IEEE1451[7] is a standard led by NIST in the United

States that focuses on overcoming the diversity of transducers.
As a way to overcome the diversity of sensors and actuators,
it stores a data structure called TEDS (Transducer Electronic
Data Sheets) [8] in the memory of the NCAP (Network
Capable Application Processor) device and operates based on
it. This TEDS is an abstraction of the operation, restrictions,
and calibration information of the sensor or actuator. The
implication is that NCAP should be equipped with a standard
stack that understands TEDS and performs protocols based on
it.

The ETRI research team proposed the Sensor Plug & Play
technique [9], which is a method of developing IoT
applications on a standardized platform [10] based on
ATmega128. Application developers can develop
applications using standardized APIs [11] provided by the
platform. Sensor providers can develop and supply device
drivers according to standardized HW[12] and SW interfaces.
In this way, since the features of the sensor/actuator are built
into the driver as SW code, the abstraction data like IEEE1451
did not be requested.

B. USB Sensor/actuator Method
Figure 1 shows the overall configuration diagram of the

USB-based Plug & Play system [13,14] which was proposed
by us in the near past. The upper part of the figure is
Raspberry-Pi and the lower part is the USB Sensor/Actuator
Development Platform (USAP). USAP is connected to the
USB port of Raspberry-Pi and performs Plug & Play functions.

708979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

Fig. 1. Overall Architecture of USB Sensor/Actuator[14]

When a USAP-based sensor/actuator is plugged into the

USB port of the Raspberry-Pi, the device driver stored inside
the USAP are delivered to the Linux OS to play. This is
accessed by Linux's standard I/O input/output API to produce
applications.

The advantage of this method is that everything is don
eautomatically tn the way of Plug&Play when the driver of the
sensor/actuator is installed. However, the disadvantage is that
the sensor/actuator requires an ATmega128-class MCU to
store USB management chips and device drivers, which
increases the price.

III. GPIO PLUG&PLAY

A. System Configuration
Figure 2 shows our Plug & Play system. In the figure, the

USB sensor/actuator contains a USB management module,
sensor D/D storage, etc. inside. On the other hand,
sensors/actuators mounted on GPIO ports operate in a plug &
play manner by mounting them on Linux without adding
additional hardware.

At this time, it is different that the device driver is
downloaded from the driver server through the Internet of the
Linux platform. In addition, the GPIO sensor/actuator is a
dummy sensor/actuator purchased in the off-the-shelf method,
so it is a semi-automatic method because the user must enter
the ID of the sensor to be installed.

Fig. 2. Overall Architecture of Our Plug&Play Schemes

B. How the system works
A GPIO port is a digital signal line used as an input or

output and its use is determined by the software. The GPIO
method has the advantage of realizing low prices by attaching
an off-the-shelf dummy sensor/actuator.

The problem is that dummy sensors/actuators do not
contain MCUs or memory, so they cannot store device drivers
or store the ID of the sensor/actuators.

In this paper, we propose the Semi Automatic method.
Figure 3 shows the operation of the GPIO sensor/actuator-
based plug & play method.

 step1. he user mounts the GPIO sensor/actuator to the
Raspberry-Pi.

 step2. Plug&Play daemon receives an ID from the user
and sends it to a P&P driver cloud server connected to
the Internet.

 step3. The Plug&Play daemon interworks with the
Plug&Play Driver Cloud Server to import the device
drivers for its sensors/actuators.

 step4. Plug&Play Daemon inserts the driver to Linux.

 step5. The application uses standard input/output APIs
such as Linux's open(), close(), read(), and write() to
access its sensors/actuators.

Fig. 3. Operating Procedure of the System

C. Implementation of the System
Figure 4 shows the configuration of the prototype. Left in

Figure shows the connection between the Raspberry-Pi and
the Ultra Sonic Sensor. Right) displays the performance
results of the application. Using Linux's read() system call
once a second, the distance value according to the change in
the ultrasound value is read and output on the screen.

Fig.. 4 . Left) Ultra Sonic Sensor attached to Raspberry-Pi, Right) Monitor

showing the result of Ultra Sonic Sensor
Left in Figure 5 shows the application. Applications can

access sensors only with open().close(), read(). Right) shows
the device drivers installed in the kernel. Basically, you can
build it according to the device driver system of Linux.

709

Fig. 5 Left) Application Program, Right) Device Driver of Ultra Sonic

Sensor

D. Comparative evaluation of USB and GPIO methods
Figure 6 shows the results of comparing, analyzing the

costs of IEEE1451, ETRI method, and our USB method and
GPIO method. In Figure, the horizontal line shows the size of
the abstraction unit. The vertical line indicates the cost of the
system cost. Stack cost refers to the stack cost according to the
degree of standardization of each method. Application costs
refer to development costs that vary from application to
application. When the abstraction unit is 0, the stack
development cost is 0, and it can be seen that the cost increases
as the abstraction unit increases. Conversely, the cost of
application decreases as the abstraction stage increases.

In the case of IEEE1451, which has a large abstraction unit,
the application cost is small, but the stack cost is high, which
increases the total development cost. Conversely, in the case
of the ETRI method, the stack cost is small, but the application
development cost increases, so the overall development cost
increases as shown in the figure. Therefore, the USB style and
GPIO style presented in this paper can be reduced as shown in
the figure in terms of overall cost.

Cost analysis is currently in progress, and four parameters
are derived from each method. 1) These include the number
of lines of code in the stack, 2) the understanding of the stack,
3) the number of lines of code in the application, and 4)
difficulties in application development. It is also being
analyzed based on the software development cost table
announced by the government.

Fig. 6 Analysis of Plug&Play Schemes

IV. CONCLUSION AND FUTURE RESEARCH DIRECTION
In this paper, a method of operating in a plug & play

manner by installing a sensor/actuator in the GPIO port of
Raspberry-Pi was presented. The sensor mounted on the GPIO
port is a dummy sensor and cannot store device drivers or IDs,
so the user enters it manually according to the request of the
daemon. While the USB sensor proposed by our research team
is Full Automatic, it is Semi Automatic, but it has the
advantage of being inexpensive.

In addition, we analyzed the cost of application
development based on the existing representative Plug&Play
methods, the IEEE1451 method, and the ETRI method, and
showed that our method could be mode cost-effective in terms
of cost.

The direction of future research is to quantitatively analyze
the cost of the four standardization methods.

REFERENCES
[1] B. Jeong and M. Hong, “A Study on the Activation of IoT Industry

Strategy and Policy in the 4th Industrial Revolution,” International
Commerce and Information Review, Vol. 21, No. 1, pp. 341–360, Mar.
2019.

[2] Y. Kim and D. Kim, “IoT Applications and Adaptation Examples,”
Journal of the KSME, Vol. 56, No. 2 , pp. 37–41, Feb. 2016.

[3] JeongBeom Song, Young Hwan Kim, Semin Kim,“ Development of
Educational Contents for Making Traffic Lights Using Arduino,” Proc.
of The Korea Institute of Information and Communication Engineering,
pp. 587-590, 2019.10.

[4] Hee-jun Kim, Hee-dae You, Jae-woo Chang,“Development of
Realtime Pet Monitoring System by using Raspberry Pi,” Proc. of
KOREA INFORMATION SCIENCE SOCIETY, pp. 1543–1545,
2016.12.

[5] A. Rubini, Linux Device Drivers, O’Reilly & Associates, Inc., 1998.
[6] S.E. Lee, J.-W. Min, T. Kim, Y. Jun, and T. Yun, “Implementation of

Home Network based on UPnP for Multimedia service,” Proceedings
of the Korea Information Processing Society Conference, May 2003,
pp. 31–34.

[7] Institute of Electrical and Electronics Engineers, Inc., “IEEE Standard
for Smart Transducer Interface for Sensors and Actuators – Network
Capable Application Processor (NCAP) Information Model,”Mixed-
Mobile Communication Working Group of the Technical Committee
on Sensor Technology TC-9 of the IEEE Instrumentation and
Measurement Society, June 1999.

[8] TC-9 Committee on Sensor Technology, “IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators-Transducer to
microprocessor Communication Protocols and Transducer Electronic
Data Sheet (TEDS) Formats”, 1997

[9] M. Yang, S. So, S. Eun, B. Kim, and J. Kim, “Sensos: A Sensor Node
Operating System with a Device Management Scheme for Sensor
Nodes,” International Conference on Information Technology
(ITNG'07), 2007, pp. 134–139.

[10] Plug&Play based USN Sensor Access Interface – Part1: Reference
Model, Telecommunications Technology Association, 2012.

[11] Plug&Play based USN Sensor Access Interface – Part2: Physical
Interface and Transmission Protocol between Sensor Node Platform
and Sensor module, Telecommunications Technology Association,
2012.

[12] Plug&Play based USN Sensor Access Interface – Part3: HAL Library
for Sensor Device Driver, Telecommunications Technology
Association, 2012.

[13] S. Lee, S. Woo. S. Cha, G. Jeong, S Eun, and S. So,“The Plug&Play of
Sensor/Actuator Modules in Raspberry-Pi,” Proc. of ICGHIT2022.
pp.218–220, Jan. 2022.

[14] C. Song, J. Park, S. So, and S. Eun,“Abstraction Granularity of
Sensors/Actuators,” Proc. of 51st Conference of KIICE, pp. 94–96,
May 2022.

710

