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Abstract— Detecting bearing faults in electric motors is highly 

crucial for improving production efficiency and reducing 

accidents in complex mechanical systems, which poses significant 

challenges for current fault diagnosis technology. This paper 

investigates and applies Artificial Intelligence (AI) to enhance the 

monitoring and diagnosis process of electric motor faults based on 

vibration signals. The research aims to construct a model for 

collecting sample data from motors with three common types of 

bearing faults and utilizes the Resnet-50 network to assess the 

accuracy of monitoring and diagnosing faults. The study conducts 

a vibration signal analysis to identify potential indicators of faults 

in electric motors. The survey results presented in the paper 

demonstrate the accuracy of using the Resnet-50 network in 

monitoring and diagnosing electric motor faults. The paper also 

provides essential insights into the performance of AI networks 

and their practical applicability in the field of industrial 

equipment maintenance and management. 

Keywords— Bearing fault diagnosis, industrial equipment 

maintenance,  Resnet.  

I. INTRODUCTION  

In most modern factory settings, the majority of engine 
monitoring and alert systems are installed separately, focusing 
on only a limited set of electrical parameters. They often lack 
substantial data collection for in-depth analysis. Regular online 
checks and continuous monitoring of engine parameter analyses 
are infrequently conducted, and there is a deficiency in 
automated engine maintenance planning capabilities. This 
deficiency results in the inability to detect unforeseen 
breakdowns and engine malfunctions, which, when not 
adequately monitored, can lead to significant machinery 
damage, necessitating costly repairs or even engine 
replacements. Conversely, when conditions are continuously 
monitored, potential issues can be identified early, leading to 
simpler, quicker, and more cost-effective repairs. Consequently, 

it is imperative and practical to conduct research and develop 
systems for examining, monitoring, and predicting electric 
motor faults using IoT (Internet of Things technology)[18] 
within factory environments. Furthermore, data encompassing 
electrical, mechanical, and thermal parameters, among others, 
will be gathered and integrated with intelligent software for 
diagnostic purposes, leveraging artificial intelligence (AI), a 
hallmark of the fourth industrial revolution 

The general operating principle of these systems includes the 
following steps: 

Fig. 1. General operating principle of the electric motor fault alert system. 

• Collect data from sensors: Gather information from 
various sensors, including temperature, vibration, 
pressure, and current sensors affixed to electrical 
machinery. These sensors continuously collect data on 
the machines' operational conditions. 

• Transmit data to the central control system: Transmit 
the data from these sensors to the central control system 
through network connections, such as the internet or 
local area networks. The data is directed to servers or 
central hubs for analysis and processing. 

• Analyze data: Within the central control system, apply 
machine learning algorithms, artificial intelligence, and 
data analysis techniques to scrutinize the sensor data. 
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The primary objective is to identify trends, patterns, and 
deviations that may signify potential incidents or faults. 

• Predict issues and generate alerts: Based on data 
analysis, the system predicts potential incidents or 
undesirable situations in the future. When a potential 
incident is identified, the system generates alerts and 
notifies managers or technicians for timely intervention. 

• Optimize maintenance: Provide in-depth insights 
regarding anticipated issues and the machinery's current 
status. This information aids in fine-tuning maintenance 
schedules and practices, resulting in time and resource 
savings. 

• Monitor and provide feedback: Following the issuance 
of alerts, the system continues to monitor the 
machinery's condition and assess the outcomes of 
interventions. This ongoing evaluation helps gauge the 
solution's effectiveness and make necessary 
adjustments. 

The remaining part of this article is organized as follows: 
Section 2 discusses prior related works on this issue, presenting 
several relevant studies to support this research. Section 3 
explains experimental data collection and the development of 
anomaly detection algorithms. Section 4 presents the main 
results of algorithm development and a performance comparison 
study. Finally, Section 5 concludes the article and suggests 
feasible directions for future research.  

II. RELATED WORK 

Recent literature surveys in [2-4] have highlighted the 
challenges and opportunities for developing robust predictive 
maintenance techniques based on machine learning, particularly 
for rotating equipment such as bearings, motors, gearboxes, and 
pumps. Many challenges and opportunities still await 
exploration in this field to enhance the accuracy of machine 
learning models and increase the flexibility of proposed 
predictive maintenance methods in the future. 

Tuan A. Z. Rahman et al. [5] proposed an intelligent 
anomaly detection method for electric motors based on vibration 
signals combined with AI algorithms. They developed an 
unsupervised learning model for two different types of motors 
within the same category: a new experimental motor and an old 
industrial motor. The model's performance in anomaly detection 
for both types of motors was extensively studied, and the results 
showed that it had the highest anomaly detection capability for 
standardized motor conditions using mapped features. However, 
they currently utilized only data from normal motor conditions 
due to a lack of information about fault conditions. 

M. Masood Tahir et al. [6] presented a solution using 
vibration signal features like RMS, Mean, Variance, skewness, 
kurtosis, median, range, etc., for model training, similar to many 
other studies. During the data preprocessing phase, this paper 
introduced an approach called Median-based Outlier Detection 
(MOD) to detect outliers (data samples in which features are 
affected by external factors, not due to faults, and exclude them 
from the training process to improve model performance). 
However, this paper did not address the classification of similar 
fault types with different fault sizes. 

In recent years, there has been a growing focus on utilizing 
deep learning (DL) methods [7-11] to address the mentioned 
issues, with many DL approaches applied to bearing fault 
diagnosis. While Convolutional Neural Networks (CNN) are 
classic DL structures for image classification [7,8,19], various 
DL models [9,10,11,20] have found wide applications in fault 
detection tasks. However, deeper DL models often face the 
problem of gradient vanishing, requiring performance sacrifices 
during training. To overcome these challenges, Residual 
Network (ResNet) was introduced [12]. ResNet employs 
residual connections, enabling the learning of residual functions 
from input rather than complex mappings from input to output. 
This innovation has significantly improved the performance of 
deep neural networks, leading to the introduction of various 
ResNet-based models [13,14]. In this research paper, we 
propose the use of ResNet-50 to train with a dataset containing 
three common bearing fault types constructed from our 
experimental model. 

III.  METHODOLOGY  

A. Data Collection 

Conducting real-time, automated diagnostics on engines 
operating in practical conditions presents significant limitations 
due to the complexity of the problem. Vibration signals and 
machinery noise during production often exhibit high levels of 
noise and variability influenced by environmental conditions. 
Careful selection of appropriate feature values for signal 
recognition can enhance the efficiency of the recognition 
model. 

Fig. 2. The general model of the engine fault detection system 

 In this paper, we have developed a motor model to address 
the problem of identification and training a deep learning 
network. Here is a basic description of this model: 

• Mechanical Component: A 3-phase, 2HP motor with 2 
bearings and an electromagnetic brake assembly to 
simulate load and torque effects. 

• Control Component: A 2.5KW inverter controls the 
motor's rotational speed, ranging from 1500 to 1750 
RPM. 

• Vibration Measurement Equipment: Vibration data is 
collected, stored on an SD card, and transmitted using 
WIFI communication standards for AI model training, 
with sampling frequencies of 6 KHz and 12 KHz. 

 The identification states are divided into four categories: 

• N (normal state): The motor operates normally without 
any damage. 
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• MI (Misalignment damaged): Misalignment occurs 
when the shaft is not aligned properly or not in the correct 
plane. Misalignment can generate uneven torque and 
cause vibration. 

• IR (inner raceway damage): The bearing's inner raceway 
is damaged. 

• OR (outer raceway damage): The bearing's outer 
raceway is damaged. 

The shaft bearings had inner and outer raceway damage at a 
2 mm diameter point. Vibration signals were recorded using an 
accelerometer at the specified location, as shown in Figure 3. 
The signals were recorded for approximately 2 minutes at a 12 
kHz sampling frequency. 

Fig. 3. Test model, device placement, and bearing faults location. 

The measuring device is attached to the motor casing. All 
data files are in MATLAB Data (*.mat) format, collected at rates 
of 6000 and 12000 samples per second. Speed and torque data 
are obtained using a torque encoder and recorded manually by a 
motor controller. 

The collected sample dataset, detailed in the table below: 

TABLE I.  DATA COLLECTED FROM THE EXPERIMENTAL 

MODEL 

Type of error Sampling 

frequency (Hz) 

Number of 

samples 

Time per sample 

(minutes) 

N 12000 4 2 

MI 12000 4 2 

IR 12000 4 2 

OR 12000 4 2 

 

 The following is an image of the collected data set after 
being converted to time domain(s). 

 

 

 

 

Fig. 4. Representation of the collected data sample set in the time domain (s). 

B. ResNet-50 

ResNet-50 is a widely recognized and influential deep 
learning architecture, particularly in the field of computer vision. 
It belongs to the family of ResNet (Residual Neural Network) 
models, which are designed to address the challenge of training 
very deep neural networks by introducing residual learning. 
Conventional neural networks encounter challenges when it 
comes to training extremely deep structures because of the 
vanishing gradient issue and performance degradation with 
increasing network depth. The vanishing gradient problem 
hinders effective learning, particularly in the initial layers of the 
network [15]. 

ResNet was introduced by Kaiming He et al. in their paper 
"Deep Residual Learning for Image Recognition" in 2015 [15]. 
The key innovation was the introduction of residual blocks, 
which enable the training of extremely deep networks by 
incorporating shortcut connections or skip connections. They 
have introduced the concept of residual learning, which is 
applied to multiple layers within the ResNet framework. 
Residual blocks in ResNet are effective when the input and 
output data have the same dimensions. Moreover, ResNet blocks 
come in two varieties, with two layers for ResNet-18 and 
ResNet-34 networks and three layers for ResNet-50 and ResNet-
101 networks. The initial two layers of the ResNet architecture 
are reminiscent of GoogleNet, involving a 7x7 convolution 
operation and 3x3 max-pooling with a stride of 227 [16]. 

ResNet-50 utilizes a bottleneck design in each of its residual 
blocks. This design comprises three convolutional layers with 
kernel sizes of 1x1, 3x3, and 1x1, which serves to reduce 
computational complexity while maintaining representational 
capacity. The name 'ResNet-50' stems from the fact that this 
architecture consists of 50 layers. It's a deep structure that 
incorporates multiple residual blocks, each with varying filter 
counts. A residual block is composed of two 3x3 convolutional 
layers and a shortcut connection. This shortcut connection 
bypasses one or more layers and directly combines the input 
with the output, forming what is referred to as the residual. A 
visual representation of the ResNet-50 architecture is provided 
in Figure 5. 
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Fig. 5. Resnet-50 architecture. 

A neural network gains knowledge by utilizing 
backpropagation. In the ResNet50 model, the upper layers 
remain adaptable, allowing them to learn through 
backpropagation, while the lower layers are kept fixed. The 
process of modifying the weights during backpropagation in 
these upper layers is known as fine-tuning. Fine-tuning the 
upper layers of ResNet50 is necessary because there's no 
assurance that their statistical properties, like mean and variance, 
will align with those of our specific dataset [17]. 

IV. EXPERIMENT AND RESULTS  

A. Experimental Dataset 

This research validates the proposed approach using self-
generated experimental data. The data acquisition system 
includes an accelerometer, a measurement module, a chassis, 
and LabVIEW software, creating a fully automated data 
collection system. The software handles vibration signal 
presentation, analysis, and gathering. The dataset includes both 
typical and defective bearings with internal ring defects, external 
ring defects, and shaft misalignment in three failure scenarios. 
An accelerometer positioned above the bearing records vibration 
signals at a 12 kHz sampling frequency. Detecting machine 
vibration serves as an early warning system for unfavorable 
bearing conditions, particularly critical for high-power electric 
motors that require a warm-up period. 

B. Identify the Headings 

Using the self-created dataset, we developed a MATLAB 
program to convert raw data into frequency spectra. Initially, we 
constructed a time vector 't' ranging from 0 to 1 second, with 
intervals of 1/Fs, aligned with the sampling frequency (Fs) of 
12000 Hz. Subsequently, we utilized the Fast Fourier Transform 
(FFT), an algorithm derived from the combination of discrete 
and continuous Fourier transforms, to analyze the signals and 
obtain their corresponding frequencies. The discrete Fourier 
transform (DFT) can be described as follows:  

 Υ(𝑘𝑘) = ∑ 𝑋𝑋(𝑗𝑗)𝑊𝑊𝑛𝑛
(𝑗𝑗−1)(𝑘𝑘−1)

𝑛𝑛

𝑗𝑗=1
                                    (1) 

Where 𝑊𝑊𝑛𝑛 = 𝑒𝑒(−2𝜋𝜋𝜋𝜋)/𝑛𝑛 Fourier transform is represented as: 

  Υ(𝜔𝜔) = ∫ 𝑥𝑥(𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑
+∞

−∞
                                        (2) 

With 𝑡𝑡/𝑇𝑇 = (𝑗𝑗 − 1)/𝑛𝑛 and 𝜔𝜔𝜔𝜔 = 2𝜋𝜋(𝑗𝑗 − 1)(𝑘𝑘 − 1)/𝑛𝑛, we 
can represent the sampled signal data using the sinc function: 

𝑥𝑥(𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) = ∑ 𝑋𝑋(𝑗𝑗)𝛿𝛿(𝑡𝑡 − (𝑗𝑗 − 1)∆𝑡𝑡)
𝑛𝑛

𝑗𝑗=1
              (3) 

Accordingly, four frequency spectra are plotted, each 
corresponding to one of the three fault charts and one for the 
normal chart as shown in Figure 6. The MATLAB script reads 
the raw data files, which are then divided into arrays of 256 
samples for the signal image transformation. The final step 
involves converting this signal data into spectral images, 
highlighting key features from the original data. 

Fig. 6. Analyze the raw data using Short-time Fourier Transform (STFT). 

After the conversion of raw data into spectral domain 
images, we proceeded with the individual classification and 
labeling of error image files. This process resulted in an image 
dataset comprising a total of 11.9k images per faulty class. These 
images were then distributed in a ratio of 70% for training, 20% 
for validation, and 10% for testing, for each class. 

C. Training datasets to each Model  

The division of the training dataset into four distinct classes 
is of paramount importance. Three of these classes are dedicated 
to faulty bearings (IR, OR, MI), while one class represents 
normal bearings. It is imperative that each class possesses a 
diverse dataset, and the inclusion of 11.9k images per faulty 
class is essential. This ensures that the model comprehensively 
learns variations associated with different faults, necessitating 
meticulous data collection. 
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Similarly, the 'Normal' class requires a sufficient number of 
images for effective discrimination between normal and faulty 
bearings. 

The inclusion of 11.9k images for this class ensures that the 
model develops a robust understanding of the typical 
characteristics exhibited by normal bearings. The creation of 
these four classes, each with a substantial and diverse dataset, 
serves as a foundational element for the model's future 
performance in bearing classification and prediction tasks. 

D. Results of fault diagnosis and comparative analysis post-

training for each model 

Table II shows the exact percentage loss of the ResNet-50 
model after training. 

TABLE II.  SUMMARY OF RESNET-50 

Model 

The Accuracy of  Training Model 

Test 

Accuracy 
Val_accuracy Val_loss Test loss 

Resnet-50 96.527% 93.381% 0.1953 0.3530 

 

The provided table offers a comprehensive evaluation of test 
and validation performance metrics [21] for various computer 
vision. The training and evaluation outcomes of the ResNet50 
model are reported in the table. The model exhibits strong 
performance in various aspects, indicating its optimal 
capabilities.  

Test Accuracy: The model achieves an impressive test 
accuracy of 96.527%. This metric reflects the model's ability to 
correctly classify images in an unseen dataset, which is a crucial 
measure of its generalization capacity. 

Validation Accuracy: The validation accuracy, at 93.381%, 
is another positive indicator of the model's performance. This 
metric is crucial during training as it helps monitor the model's 
performance on a separate dataset, making it an essential tool for 
preventing overfitting. 

Validation Loss: The low validation loss value of 0.1953 
suggests that the model generalizes well during training. Lower 
validation loss values indicate that the model is not overfitting 
and is effectively learning from the training data. 

Test Loss: The test loss is 0.3530, which is slightly higher 
than the validation loss. This difference can be expected, as the 
test loss measures the model's performance on a completely 
unseen dataset. The proximity of the test loss to the validation 
loss suggests that the model maintains its performance on new, 
unseen data. 

Following the training of the dataset using Resnet50, the 
subsequent step involved the utilization of the test dataset 
comprising four distinct classes, each consisting of up to 2000 
images per class. The primary objective was to evaluate the 
accuracy of the AI models post-training. The evaluation results 
are conveyed through the presentation of the confusion matrix 
below: 

 

Fig. 7. Resnet50 Confusion matrix. 

      In conclusion, the ResNet50 model demonstrates optimal 
capabilities in image classification tasks. It exhibits high test 
accuracy and low validation and test loss values, indicating its 
ability to generalize well and make accurate predictions on 
unseen data. These results suggest that the model is well-trained 
and can be considered reliable for various image recognition 

applications. 

E. Evaluate the model's accuracy once more using a different 

dataset: 

 The chart below describes the number of misclassified 
images in a test set of 2000 images using the ResNet50 model, 
showcasing its performance in different categories:   

Fig. 8. The chart displays the count of misclassified images. 

The ResNet50 model was evaluated on a diverse test set of 
2000 images, and the results are presented in the chart. The 
model's performance varies across different domains, as 
indicated by the misclassification counts in the respective 
categories. Notably, the ResNet50 model demonstrates a 
relatively strong performance in the 'Normal' category, with 
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only 6 misclassified images out of 2000. This underscores its 
robustness in standard image recognition tasks. 

In the 'IR' category, the model performs moderately well 
with 9 misclassified images, indicating its ability to adapt to 
different image modalities. However, in more specialized 
domains such as 'MI' , the model shows room for improvement, 
with 21 misclassified images. Furthermore, in the 'OR' category, 
the model exhibits a reasonable performance with 10 
misclassified images, suggesting its suitability for object 
recognition tasks. 

In conclusion, the ResNet50 model excels in standard image 
recognition tasks but may require further fine-tuning or domain-
specific adaptations for optimal performance in specialized 
domains. Understanding the model's strengths and weaknesses 
in different domains is essential for selecting the appropriate tool 
for specific image analysis applications. 

V. CONCLUSION 

      Deep learning algorithms offer numerous advantages for 
machinery fault diagnosis, including engines, transformers, and 
cutting machines. We anticipate a rapid increase in studies 
diagnosing roller bearing faults using deep learning. This 
paper's primary contribution lies in creating a dataset of three 
types of bearing faults and testing it with various state-of-the-
art deep learning networks. The findings highlight the 
advantages of the ResNet-50 network in this context, opening 
new possibilities for classification tasks. In the future, we plan 
to expand and refine our dataset to enhance its 
comprehensiveness. Specifically, we will build and collect data 
with many different bearing sizes. Furthermore, we will find 
solutions to solve problems related to our big data for real-time 
transmission to IOT systems. This helps engineers remotely 
monitor and diagnose machine errors 
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