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Abstract—This paper proposes a novel approach for 
monocular depth estimation that leverages deep networks and 
employs three types of features, namely depth map, point 
cloud, and virtual normal, to compute a multi-task loss 
function. Our experimental evaluations employ one cutting-
edge monocular depth estimation model with distinct 
convolutional network architectures, trained and tested on a 
public indoor depth estimation NYU dataset. The 
experimental results demonstrate the consistent improvement 
in accuracy of depth estimation achieved by minimizing the 
proposed multi-task loss function, thus validating its 
effectiveness. 
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I. INTRODUCTION 

Depth estimation has long been recognized as a crucial 
computer vision technology that enhances the perception and 
understanding of real 3D scenes, with potential applications 
in robot navigation, autopilot, and virtual reality [1,2,3].  
Historically, researchers have estimated depth maps based on 
depth cues such as vanishing points [4], focus and defocus [5], 
and shadows [6]. Binocular camera depth estimation methods 
typically involve stereo matching and triangulation to obtain 
the disparity between two 2D images captured by binocular 
cameras [7], followed by calculation of the depth map. 
However, binocular depth estimation methods require two 
fixed cameras to capture sufficient features for matching in 
the image and can be challenging in scenes with low or no 
texture. As a result, researchers have shifted their focus to 
monocular depth estimation, which only requires a single 
camera to capture images or video sequences, without the 
need for additional complex equipment and specialized 
calibration techniques, making it highly applicable in various 
scenarios. However, due to the lack of reliable stereo vision 
relationships in monocular images, depth regression 
estimation is inherently ill-posed [8], and obtaining accurate 
depth estimation is challenging, necessitating continuous 
research and development efforts.  

In recent times, there has been significant progress in 
the integration of artificial intelligence (AI) into smart 
vehicles, which are defined as movable vehicles equipped 
with sensory and intelligent capabilities. Similar to human 
perception through visual cues, smart vehicles utilize 
cameras to perceive the internal and external environment of 
the vehicle, understand road conditions, and driving status, 
thereby improving driving safety. The intelligent features 
provided by cameras for vehicles include lane detection, 
pedestrian detection, vehicle detection, collision prevention, 
and road-sign recognition, among others. The reliability of 
intelligent assisted driving in vehicles can be enhanced 

through big data analysis and deep learning, leading to 
advancements in autonomous driving technology and the 
early maturity of the self-driving car industry. This paper 
focuses on investigating monocular depth estimation using 
image processing and deep learning techniques to predict 
pixel-level depth values from a single two-dimensional image. 
The combination of this technology with mature object 
detection techniques in the future has the potential to provide 
safe and reliable driving services for the self-driving car 
industry, such as collision prevention, speed recognition, and 
blind spot detection. 

II. LITERATURE REVIEW 

Eigen et al. [9] first proposed a coarse-to-fine framework 
in 2014, where a coarse network learns the global depth of 
the entire image to obtain a rough depth map, and a fine 
network learns local features to refine the depth map. 
Essentially, the framework for monocular depth estimation 
with deep learning consists of an encoder-decoder network, 
where the input is an RGB image and the output is a depth 
map. In general, Monocular depth estimation methods can be 
attributed into three categories: supervised, unsupervised, 
and semi-supervised training approaches. 

The supervised monocular depth estimation, as described in 
[10], estimates depth by learning scene structural information 
from the ground-truth (GT) depth map. However, obtaining 
GT depth maps is costly, and therefore, some monocular 
depth estimation networks are trained with fewer GT or 
without GT, resulting in unsupervised and semi-supervised 
learning methods. Supervised learning, as reported in [11], 
has the highest estimation accuracy, but it heavily relies on 
GT depth maps. On the other hand, unsupervised monocular 
depth estimation is usually trained with stereo pair-wise 
image [12] [13]

 Semi-supervised 
learning methods rely on auxiliary information such as virtual 
data [14], sparse data [15], and surface normal [16], which 
are easier to obtain than GT depth maps. 

III. THE PROPOSED METHOD 

This paper proposes a monocular depth estimation method 
with a semi-supervised multi-task loss. This loss utilizes three 
kinds of features: depth, point cloud, and virtual normal, to 
calculate a multi-task loss function. The depth loss evaluates 
the difference between the true and estimated depth values, 
while the point cloud loss evaluates the difference between the 
true and estimated point cloud coordinates, and the virtual 
normal loss measures the difference between real and 
estimated virtual normal vectors. In the following section, we 
will present the overall structure of the proposed method, 
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depth estimation, point cloud transformation, virtual normal 
calculation, and the proposed multi-task loss function. 

A. Overall structure 

Figure 1 illustrates the overall structure of the proposed 
monocular depth estimation method. It resizes an input image 
to half its original size and uses a depth estimation network, 
Adabins [17], to estimate depth. The depth map is then used 
to compute 3D point cloud coordinates, which are further 
used to obtain pixel-level surface normals. Prior to network 
training, the point cloud coordinates and virtual normal 
vectors for each training image are computed from the depth 
map. During network training, a multi-task loss function, 
incorporating three kinds of features: depth map, point cloud, 
and virtual normal, is calculated. The network parameters are 
then trained to minimize this multi-task loss function. After 
the training process is completed, an input test image will be 
fed into the depth estimation network, which then can 
produce an estimated depth map as its output. 

 

Fig. 1. The overall structure of the proposed method 

B. Adabins depth estimation deep network 

Adabins [17] emphasizes the importance of global feature 
processing at high resolution, and it passes the decoder's 
high-resolution features through mViT (Mini Vision 
Transformer) to extract a more expansive and holistic range 
of global information. Adabins employs a classification-
based approach to estimate the precise depth value by 
predicting the corresponding depth interval (bins) for each 
input image scene. This allows for a more accurate regression 
of the depth information. Fig. 2 shows the architecture of 
Adabins, which consists of two primary components: a 
standard encoder-decoder and an Adabins module. The first 
component employs an EfficientNet-B5 [18] as the encoder 
to extract features from the input image. These features are 
then progressively convolved by the decoder to reconstruct 
an initial depth map. The second component involves 
processing the high-resolution features generated by the 
decoder through mViT, and yields two distinct outputs: the 
range-attention map (R) with dimensions h×w×C, and the bin 
widths (b), represented as an N-dimensional vector, where N 

corresponds to the total number of depth intervals. To obtain 
the final depth map, a hybrid regression approach consists of 
four steps that leverages both R and b. Firstly, the channel 
number of R is transformed to N through a 1×1 convolution. 
Secondly, a softmax operation is applied to generate N 

probability scores (𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑁𝑁), where pi is the probability 

of each pixel belonging to the i-th depth interval. Thirdly, the 
centers of N depth intervals, denoted 𝑐𝑐(𝑏𝑏1), 𝑐𝑐(𝑏𝑏2), … , 𝑐𝑐(𝑏𝑏𝑁𝑁), 
are calculated using the following formula:  

𝑐𝑐(𝑏𝑏𝑖𝑖) =  𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 + (𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚) (
𝑏𝑏𝑖𝑖
2 + ∑ 𝑏𝑏𝑗𝑗𝑖𝑖−1

𝑗𝑗 )  （1） 

where, 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚  represents the minimum depth value, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  

represents the maximum depth value, and 𝑏𝑏𝑖𝑖  represents the 

width of the i-th depth interval. Finally, the final estimated 
depth value, d̃, is computed by combining the Softmax scores 

{𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑁𝑁}  and the depth bin centers {𝑐𝑐(𝑏𝑏1),
𝑐𝑐(𝑏𝑏2), … , 𝑐𝑐(𝑏𝑏𝑁𝑁)} in a linear manner as  

       �̃�𝑑 = ∑ 𝑐𝑐(𝑏𝑏𝑘𝑘)𝑝𝑝𝑘𝑘𝑁𝑁
𝑘𝑘=1                                           （2） 

 

 
 
Fig. 2. Adabins comprises a standard encoder-decoder and an 
AdaBins module, and it takes an RGB color image as input 
and produces a depth map of pixel-level resolution as output. 
 

C. Features 

This subsections briefly describes the applied two kinds of 
features, i.e. point cloud and virtual normal. 

⚫ Point cloud 

A point cloud refers to a collection of data points that 
represent the spatial attributes of each image pixel, 
including its depth value d, pixel coordinate (u,v), and 
camera coordinate (X,Y,Z). To obtain accurate spatial 
information from a depth map, a two-step process is 
required. Firstly, a pixel coordinate is transformed into an 
image coordinate. Secondly, an image coordinate is 
further transformed into a camera coordinate. The pixel 
coordinate system takes the upper-left corner of the image 
as the origin, while the image coordinate system takes the 
center of the image as the origin. Assuming (u,v) is the 
pixel coordinate of a pixel P in the image, (x,y) is the 

corresponding image coordinate of P, and (𝑢𝑢0,𝑣𝑣0) is the 

pixel coordinate of the center of the image, then 

              { 𝑥𝑥 = 𝑢𝑢 − 𝑢𝑢0𝑦𝑦 = 𝑣𝑣 − 𝑣𝑣0                                  （3） 

Suppose 𝑓𝑓𝑚𝑚 and  𝑓𝑓𝑦𝑦  are the horizontal and vertical focal 

lengths of the camera in pixel units, and d is the depth 
value, which is the actual distance between the camera 
and the target point. The transformation formula between 
image coordinates and camera coordinates is as follows: 

               

{
 
 

 
 𝑋𝑋 =

𝑚𝑚
𝑓𝑓𝑥𝑥
𝑍𝑍                  

𝑌𝑌 = 𝑦𝑦
𝑓𝑓𝑦𝑦
𝑍𝑍                  

𝑍𝑍 = 𝑑𝑑

√( 𝑥𝑥𝑓𝑓𝑥𝑥)
2+( 𝑦𝑦𝑓𝑓𝑦𝑦)

2+1

                          （ 4 ） 

By utilizing equations (3) and (4), the transformation 
from a given pixel depth (with known values of u, v, and 
d) to its corresponding point cloud can be expressed as 
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{
  
 

  
 𝑋𝑋 =

𝑍𝑍(𝑢𝑢−𝑢𝑢0)
𝑓𝑓𝑥𝑥

                               

𝑌𝑌 = 𝑍𝑍(𝑣𝑣−𝑣𝑣0)
𝑓𝑓𝑦𝑦

                                

𝑍𝑍 = 𝑑𝑑

√（𝑢𝑢−𝑢𝑢0
𝑓𝑓𝑥𝑥

）
2
+（𝑣𝑣−𝑣𝑣0

𝑓𝑓𝑦𝑦
）
2
+1
    

           （5） 

 

⚫ Virtual normal 

A virtual normal vector represents the normal vector of a 
virtual surface of one pixel and can be constructed from a 
depth map. A virtual normal (VN) loss function was 
proposed in [19] to conditionally select N groups of points 
(each group consisting of three point cloud coordinates A, 
B, and C) randomly from the point cloud transformed 
from the depth map to calculate the error of the virtual 
normal vectors. A VN loss provides a remote three-
dimensional geometric constraint for the depth-estimation 

model. The selected N groups of points,{(𝑃𝑃𝐴𝐴𝑘𝑘, 𝑃𝑃𝐵𝐵𝑘𝑘, 𝑃𝑃𝐶𝐶𝑘𝑘)|𝑘𝑘 =
1…𝑁𝑁}, are subject to the following two constraints:  

1. Non-collinear: The angle between any two vectors 

in a triangle must be between 30°and 120°, that is 

                  

30° ≤ ∠ (𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐵𝐵𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) ≤ 120°,                             

30° ≤ ∠ (𝑃𝑃𝐵𝐵𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑃𝑃𝐵𝐵𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) ≤ 120°                              

30° ≤ ∠ (𝑃𝑃𝐶𝐶𝑘𝑘𝑃𝑃𝐵𝐵𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑃𝑃𝐶𝐶𝑘𝑘𝑃𝑃𝐴𝐴𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) ≤ 120°                              

 

2. Long distance: The distance between any two 
points in a triangle must be greater than 0.6 meters, 
that is  

               ‖𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐵𝐵𝑘𝑘̅̅ ̅̅ ̅̅ ̅‖ > 0.6 , ‖𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘̅̅ ̅̅ ̅̅ ̅‖ > 0.6 and ‖𝑃𝑃𝐵𝐵𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘̅̅ ̅̅ ̅̅ ̅‖ > 0.6   
 

The formula for calculating the normal vector of the k-th 
group of points is: 

           𝑛𝑛𝑘𝑘 =
𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐵𝐵𝑘𝑘
⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗   × 𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘

⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  

||𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐵𝐵𝑘𝑘
⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗   × 𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘

⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ||
⋯⋯⋯(𝑘𝑘 = 1,… ,𝑁𝑁)    （6） 

D. Multi-task Loss Function 

One of the main contribution of this paper is to propose a 
novel multi-task loss function𝐿𝐿𝑀𝑀𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘  with three different 

losses (depth loss, point cloud loss, and virtual normal loss). 
The depth loss LDepth calculates the difference between the 
true and estimated depth values, the point cloud loss LPointCloud 
calculates the difference between the true and estimated point 
cloud coordinates, and the virtual normal loss LVirtualNormal 
calculates the vector difference between the true and 

estimated virtual normals. 𝐿𝐿𝑀𝑀𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘  is calculated as follows:  

𝐿𝐿𝑀𝑀𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 𝛼𝛼1 × 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀ℎ + 𝛼𝛼2 × 𝐿𝐿𝐶𝐶𝑀𝑀𝐶𝐶𝑢𝑢𝑑𝑑𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀 +
                         𝛼𝛼3 × 𝐿𝐿𝑉𝑉𝑀𝑀𝑉𝑉𝑀𝑀𝑢𝑢𝑀𝑀𝑀𝑀𝑉𝑉𝐶𝐶𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀                                               (7) 

here, 𝛼𝛼1, 𝛼𝛼2 and 𝛼𝛼3 are the weights of the depth loss, point 
cloud loss, and virtual normal loss, respectively, which adjust 
the contribution of the three losses in the multi-task loss 
function.  

 

 It is related to the device, such as using lidar to obtain 
depth values. In certain areas such as sky and the dark 

 
⚫ Depth Loss (LDepth) 

Let  𝑑𝑑𝑀𝑀 and  𝑑𝑑𝑀𝑀 ′ be respectively the true and estimated depth 

values of the i-th pixel in an image, and T be the total number 
of valid depth point in this image1, then  

             𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀ℎ =
1
𝑀𝑀 ∑

|𝑑𝑑𝑖𝑖−𝑑𝑑𝑖𝑖′|
𝑑𝑑𝑖𝑖

𝑀𝑀
𝑀𝑀=1                                       （8） 

3.5.2 Point Cloud Loss (LPointCloud)  

According to Eq. (5), the corresponding pixel coordinate (u,v) 
can be reconstructed by a point cloud coordinate (X, Y, Z) as 

                  {
𝑢𝑢 = 𝑋𝑋𝑓𝑓𝑥𝑥

𝑍𝑍 + 𝑢𝑢0
𝑣𝑣 = 𝑌𝑌𝑓𝑓𝑦𝑦

𝑍𝑍 + 𝑣𝑣0
  

                                               （9） 

Let (u, v) be the pixel coordinate of an image pixel, (X, Y, Z) 

and (𝑋𝑋′, 𝑌𝑌′, 𝑍𝑍′) be its corresponding point cloud coordinates 

derived respectively from the ground-truth and estimated 
depth maps. To calculate LPointCloud, X and Y are deliberately 
paired with 𝑍𝑍′, and a distinct pixel coordinate (𝑢𝑢′,𝑣𝑣′) can be 

derived from the specified point cloud coordinate (X, Y, Z′) 
as 

                    {
𝑢𝑢′ = 𝑋𝑋𝑓𝑓𝑥𝑥

𝑍𝑍′ + 𝑢𝑢0
𝑣𝑣′ = 𝑌𝑌𝑓𝑓𝑦𝑦

𝑍𝑍′ + 𝑣𝑣0  
                                          （10） 

Conceptually, if the estimated depth d' is close to the ground-
truth depth d, then Z and Z' will be close too, leading to (u,v) 
and (u',v') being close. However, if the difference between d' 
and d is large, then Z and Z' will also differ a lot, causing (u,v) 
and (u',v') to differ greatly. Therefore, the proposed LPointCloud 
provides a consistency constraint between the depth map and 
the point cloud for the depth estimation model, and the 
resulting pixel coordinates can be used to calculate the point 

cloud loss. As a result, √(𝑢𝑢 − 𝑢𝑢′)2 + (𝑣𝑣 − 𝑣𝑣′)2  
can be utilized in calculating  and provides a consistency 
constraint between the depth map and the point cloud for the 
depth estimation model. However, Equation (9) denotes the 

same amount of deviation ( 𝑍𝑍 − 𝑍𝑍′ ) in the optical axis 

direction, both deviation (𝑢𝑢 − 𝑢𝑢′) and (𝑣𝑣 − 𝑣𝑣′) will increase 

proportionally with the values of 𝑋𝑋 and 𝑌𝑌. It means the pixels 

away from the image center are prone to have larger deviation 

for both 𝑢𝑢 − 𝑢𝑢′and 𝑣𝑣 − 𝑣𝑣′ than those near the image center. 

Hence, 𝐿𝐿𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀𝐶𝐶𝑢𝑢𝑑𝑑  should be normalized as 

√(𝑢𝑢𝑖𝑖−𝑢𝑢𝑖𝑖
′

𝑢𝑢𝑖𝑖−𝑢𝑢0
)
2
+ (𝑣𝑣𝑖𝑖−𝑣𝑣𝑖𝑖

′

𝑣𝑣𝑖𝑖−𝑣𝑣0
)
2
. Furthermore, to avoid the abnormality 

of dividing by zero, the pixels with a 𝑢𝑢0 horizontal coordinate 

or a 𝑣𝑣0  vertical coordinate should have a different 

normalization design. Let A be the set of points with both non 

𝑢𝑢0 horizontal coordinates and non 𝑣𝑣0 vertical coordinates, B 

be the set of points with 𝑢𝑢0 horizontal coordinates and non 

𝑣𝑣0 vertical coordinates, and C be the set of points with non 

regions that absorb light completely, distance values cannot 
be acquired. Consequently, these areas generate missing 
values, rendering them invalid points. 
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𝑢𝑢0 horizontal coordinates and 𝑣𝑣0 vertical coordinates. Finally, 

𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is designed as  

𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1
𝑇𝑇 (∑ √(𝑃𝑃𝑖𝑖−𝑃𝑃𝑖𝑖

′

𝑃𝑃𝑖𝑖−𝑃𝑃0
)

2
+ (𝑣𝑣𝑖𝑖−𝑣𝑣𝑖𝑖

′

𝑣𝑣𝑖𝑖−𝑣𝑣0
)

2
𝑃𝑃∈𝐴𝐴 +

            ∑ |𝑣𝑣𝑖𝑖−𝑣𝑣𝑖𝑖
′

𝑣𝑣𝑖𝑖−𝑣𝑣0
|𝑃𝑃∈𝐵𝐵 + ∑ |𝑃𝑃𝑖𝑖−𝑃𝑃𝑖𝑖

′

𝑃𝑃𝑖𝑖−𝑃𝑃0
|𝑃𝑃∈𝑃𝑃 )                                （11） 

⚫ Calculation of virtual normal loss (LVirtualNormal) 

Assuming that 𝑛𝑛𝑃𝑃 and 𝑛𝑛𝑃𝑃
′ are respectively the ground-truth and 

estimated virtual normal vectors of the i-th pixel in the image, 
then LVirtualNormal is computed as 

                       𝐿𝐿𝑉𝑉𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝑉𝑉𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃 = 1
𝑇𝑇 ∑ ||𝑛𝑛𝑃𝑃 − 𝑛𝑛𝑃𝑃

′||1
𝑉𝑉
𝑃𝑃=1      （12） 

IV. EXPERIMENT 

In this section, we evaluate the performance of combining 
different loss functions with scale-invariant loss functions. 
We train and test these models using the NYU-Mini datasets. 
NYU Depth v2 [20] is an indoor dataset that contains RGB 
images and depth maps. The data was captured using 
Microsoft Kinect in various indoor scenes, with a uniform 
image resolution of 480 × 640. The dataset contains 120K 
training samples and 654 test samples, with a maximum valid 
depth value of 10 meters. Due to experimental cost 
considerations, we proportionally cropped the data from each 
scene in the NYU-Depth-v2 dataset to create a subset of 
1,597 images. We used this subset, named NYU-Mini, for 
training in this paper. For testing, we did not make any 
adjustments and used the original 654 test samples. Figure 3 
shows three examples of  NYU Depth v2. The first row shows 
RGB images, and the second row shows their corresponding 
depth maps. 

   

  

   

  

Fig. 3. Example images from NYU Depth v2. The first 
row shows RGB images, and the second row shows their 
corresponding depth maps. 
 
Table 7 compares the performance of depth estimation using 
different loss functions on NYU-Mini Dataset, including 
scale-invariant loss (SI), point cloud conversion loss (PCL), 
and virtual normal loss (VNL). SI was proposed by Eigen [9] 
and has become a commonly used loss function in the field 
of depth estimation. In our experiments, SI is used to compute 
the depth loss. The weight values for the loss functions are 
shown as 𝛼𝛼1 = 10, 𝛼𝛼2 = 8  and 𝛼𝛼3 = 4  for Eq. (7). The 

results demonstrate that the proposed multi-task loss function 
effectively improves the accuracy of depth estimation. Figure 

3 shows two estimated depth maps using different loss 
functions. The red-box regions highlight the places where our 
method performs better.  

 
Table 7: Performance Comparison with Different loss 
functions on the NYU-Mini Dataset. SI is scale-invariant loss, 
PTL is point cloud loss, and VNL is virtual normal loss.  

SI 0.7653 0.1687 

SI+PCL 0.7786 0.1659 

SI+VNL 0.7817 0.1616 

SI+PCL+VNL 0.7850 0.1633 

 

V. CONCLUSION 

This paper introduces a novel semi-multi-task loss 
function aimed at enhancing the performance of monocular 
depth estimation. Our experimental results clearly 
demonstrate a significant performance boost when utilizing 
this proposed loss function. Our comprehensive approach 
maximizes the adaptability of point clouds. In addition to 
generating the fundamental depth map, it provides 
supplementary supervision by incorporating point clouds and 
surface normals. Notably, this method can be computed 
without the need for training additional subnetworks, thus 
demonstrating high generality and practical utility. In the 
future, we plan to extend the application of this proposed loss 
function to various other depth estimation modules to assess 
its overall effectiveness. 
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