
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

A Multi-Feature-Based Multi-Task Loss Approach
for Enhanced Monocular Depth Estimation

YeaShuan Huang
CSIE

Chung-Hua University

Hsinchu, Taiwan
yeashuan@chu.edu.tw

Yuxiang Chen
CSIE

Chung-Hua University

Hsinchu, Taiwan
tp655998@gmail.com

Chang Wu Yu
CSIE

Chung-Hua University

Hsinchu, Taiwan
cwyu@chu.edu.tw

`

Abstract—This paper proposes a novel approach for
monocular depth estimation that leverages deep networks and
employs three types of features, namely depth map, point
cloud, and virtual normal, to compute a multi-task loss
function. Our experimental evaluations employ one cutting-
edge monocular depth estimation model with distinct
convolutional network architectures, trained and tested on a
public indoor depth estimation NYU dataset. The
experimental results demonstrate the consistent improvement
in accuracy of depth estimation achieved by minimizing the
proposed multi-task loss function, thus validating its
effectiveness.

Keywords—depth estimation, deep learning, multi-task loss

function

I. INTRODUCTION

Depth estimation has long been recognized as a crucial
computer vision technology that enhances the perception and
understanding of real 3D scenes, with potential applications
in robot navigation, autopilot, and virtual reality [1,2,3].
Historically, researchers have estimated depth maps based on
depth cues such as vanishing points [4], focus and defocus [5],
and shadows [6]. Binocular camera depth estimation methods
typically involve stereo matching and triangulation to obtain
the disparity between two 2D images captured by binocular
cameras [7], followed by calculation of the depth map.
However, binocular depth estimation methods require two
fixed cameras to capture sufficient features for matching in
the image and can be challenging in scenes with low or no
texture. As a result, researchers have shifted their focus to
monocular depth estimation, which only requires a single
camera to capture images or video sequences, without the
need for additional complex equipment and specialized
calibration techniques, making it highly applicable in various
scenarios. However, due to the lack of reliable stereo vision
relationships in monocular images, depth regression
estimation is inherently ill-posed [8], and obtaining accurate
depth estimation is challenging, necessitating continuous
research and development efforts.

In recent times, there has been significant progress in
the integration of artificial intelligence (AI) into smart
vehicles, which are defined as movable vehicles equipped
with sensory and intelligent capabilities. Similar to human
perception through visual cues, smart vehicles utilize
cameras to perceive the internal and external environment of
the vehicle, understand road conditions, and driving status,
thereby improving driving safety. The intelligent features
provided by cameras for vehicles include lane detection,
pedestrian detection, vehicle detection, collision prevention,
and road-sign recognition, among others. The reliability of
intelligent assisted driving in vehicles can be enhanced

through big data analysis and deep learning, leading to
advancements in autonomous driving technology and the
early maturity of the self-driving car industry. This paper
focuses on investigating monocular depth estimation using
image processing and deep learning techniques to predict
pixel-level depth values from a single two-dimensional image.
The combination of this technology with mature object
detection techniques in the future has the potential to provide
safe and reliable driving services for the self-driving car
industry, such as collision prevention, speed recognition, and
blind spot detection.

II. LITERATURE REVIEW

Eigen et al. [9] first proposed a coarse-to-fine framework
in 2014, where a coarse network learns the global depth of
the entire image to obtain a rough depth map, and a fine
network learns local features to refine the depth map.
Essentially, the framework for monocular depth estimation
with deep learning consists of an encoder-decoder network,
where the input is an RGB image and the output is a depth
map. In general, Monocular depth estimation methods can be
attributed into three categories: supervised, unsupervised,
and semi-supervised training approaches.

The supervised monocular depth estimation, as described in
[10], estimates depth by learning scene structural information
from the ground-truth (GT) depth map. However, obtaining
GT depth maps is costly, and therefore, some monocular
depth estimation networks are trained with fewer GT or
without GT, resulting in unsupervised and semi-supervised
learning methods. Supervised learning, as reported in [11],
has the highest estimation accuracy, but it heavily relies on
GT depth maps. On the other hand, unsupervised monocular
depth estimation is usually trained with stereo pair-wise
image [12] [13]

 Semi-supervised
learning methods rely on auxiliary information such as virtual
data [14], sparse data [15], and surface normal [16], which
are easier to obtain than GT depth maps.

III. THE PROPOSED METHOD

This paper proposes a monocular depth estimation method
with a semi-supervised multi-task loss. This loss utilizes three
kinds of features: depth, point cloud, and virtual normal, to
calculate a multi-task loss function. The depth loss evaluates
the difference between the true and estimated depth values,
while the point cloud loss evaluates the difference between the
true and estimated point cloud coordinates, and the virtual
normal loss measures the difference between real and
estimated virtual normal vectors. In the following section, we
will present the overall structure of the proposed method,

738979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

depth estimation, point cloud transformation, virtual normal
calculation, and the proposed multi-task loss function.

A. Overall structure

Figure 1 illustrates the overall structure of the proposed
monocular depth estimation method. It resizes an input image
to half its original size and uses a depth estimation network,
Adabins [17], to estimate depth. The depth map is then used
to compute 3D point cloud coordinates, which are further
used to obtain pixel-level surface normals. Prior to network
training, the point cloud coordinates and virtual normal
vectors for each training image are computed from the depth
map. During network training, a multi-task loss function,
incorporating three kinds of features: depth map, point cloud,
and virtual normal, is calculated. The network parameters are
then trained to minimize this multi-task loss function. After
the training process is completed, an input test image will be
fed into the depth estimation network, which then can
produce an estimated depth map as its output.

Fig. 1. The overall structure of the proposed method

B. Adabins depth estimation deep network

Adabins [17] emphasizes the importance of global feature
processing at high resolution, and it passes the decoder's
high-resolution features through mViT (Mini Vision
Transformer) to extract a more expansive and holistic range
of global information. Adabins employs a classification-
based approach to estimate the precise depth value by
predicting the corresponding depth interval (bins) for each
input image scene. This allows for a more accurate regression
of the depth information. Fig. 2 shows the architecture of
Adabins, which consists of two primary components: a
standard encoder-decoder and an Adabins module. The first
component employs an EfficientNet-B5 [18] as the encoder
to extract features from the input image. These features are
then progressively convolved by the decoder to reconstruct
an initial depth map. The second component involves
processing the high-resolution features generated by the
decoder through mViT, and yields two distinct outputs: the
range-attention map (R) with dimensions h×w×C, and the bin
widths (b), represented as an N-dimensional vector, where N

corresponds to the total number of depth intervals. To obtain
the final depth map, a hybrid regression approach consists of
four steps that leverages both R and b. Firstly, the channel
number of R is transformed to N through a 1×1 convolution.
Secondly, a softmax operation is applied to generate N

probability scores (𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑁𝑁), where pi is the probability

of each pixel belonging to the i-th depth interval. Thirdly, the
centers of N depth intervals, denoted 𝑐𝑐(𝑏𝑏1), 𝑐𝑐(𝑏𝑏2), … , 𝑐𝑐(𝑏𝑏𝑁𝑁),
are calculated using the following formula:

𝑐𝑐(𝑏𝑏𝑖𝑖) = 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 + (𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚) (
𝑏𝑏𝑖𝑖
2 + ∑ 𝑏𝑏𝑗𝑗𝑖𝑖−1

𝑗𝑗) （1）

where, 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 represents the minimum depth value, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

represents the maximum depth value, and 𝑏𝑏𝑖𝑖 represents the

width of the i-th depth interval. Finally, the final estimated
depth value, d̃, is computed by combining the Softmax scores

{𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑁𝑁} and the depth bin centers {𝑐𝑐(𝑏𝑏1),
𝑐𝑐(𝑏𝑏2), … , 𝑐𝑐(𝑏𝑏𝑁𝑁)} in a linear manner as

 �̃�𝑑 = ∑ 𝑐𝑐(𝑏𝑏𝑘𝑘)𝑝𝑝𝑘𝑘𝑁𝑁
𝑘𝑘=1 （2）

Fig. 2. Adabins comprises a standard encoder-decoder and an
AdaBins module, and it takes an RGB color image as input
and produces a depth map of pixel-level resolution as output.

C. Features

This subsections briefly describes the applied two kinds of
features, i.e. point cloud and virtual normal.

⚫ Point cloud

A point cloud refers to a collection of data points that
represent the spatial attributes of each image pixel,
including its depth value d, pixel coordinate (u,v), and
camera coordinate (X,Y,Z). To obtain accurate spatial
information from a depth map, a two-step process is
required. Firstly, a pixel coordinate is transformed into an
image coordinate. Secondly, an image coordinate is
further transformed into a camera coordinate. The pixel
coordinate system takes the upper-left corner of the image
as the origin, while the image coordinate system takes the
center of the image as the origin. Assuming (u,v) is the
pixel coordinate of a pixel P in the image, (x,y) is the

corresponding image coordinate of P, and (𝑢𝑢0,𝑣𝑣0) is the

pixel coordinate of the center of the image, then

 { 𝑥𝑥 = 𝑢𝑢 − 𝑢𝑢0𝑦𝑦 = 𝑣𝑣 − 𝑣𝑣0 （3）

Suppose 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑦𝑦 are the horizontal and vertical focal

lengths of the camera in pixel units, and d is the depth
value, which is the actual distance between the camera
and the target point. The transformation formula between
image coordinates and camera coordinates is as follows:

{

 𝑋𝑋 =

𝑚𝑚
𝑓𝑓𝑥𝑥
𝑍𝑍

𝑌𝑌 = 𝑦𝑦
𝑓𝑓𝑦𝑦
𝑍𝑍

𝑍𝑍 = 𝑑𝑑

√(𝑥𝑥𝑓𝑓𝑥𝑥)
2+(𝑦𝑦𝑓𝑓𝑦𝑦)

2+1

 （ 4 ）

By utilizing equations (3) and (4), the transformation
from a given pixel depth (with known values of u, v, and
d) to its corresponding point cloud can be expressed as

739

{

 𝑋𝑋 =

𝑍𝑍(𝑢𝑢−𝑢𝑢0)
𝑓𝑓𝑥𝑥

𝑌𝑌 = 𝑍𝑍(𝑣𝑣−𝑣𝑣0)
𝑓𝑓𝑦𝑦

𝑍𝑍 = 𝑑𝑑

√（𝑢𝑢−𝑢𝑢0
𝑓𝑓𝑥𝑥

）
2
+（𝑣𝑣−𝑣𝑣0

𝑓𝑓𝑦𝑦
）
2
+1

 （5）

⚫ Virtual normal

A virtual normal vector represents the normal vector of a
virtual surface of one pixel and can be constructed from a
depth map. A virtual normal (VN) loss function was
proposed in [19] to conditionally select N groups of points
(each group consisting of three point cloud coordinates A,
B, and C) randomly from the point cloud transformed
from the depth map to calculate the error of the virtual
normal vectors. A VN loss provides a remote three-
dimensional geometric constraint for the depth-estimation

model. The selected N groups of points,{(𝑃𝑃𝐴𝐴𝑘𝑘, 𝑃𝑃𝐵𝐵𝑘𝑘, 𝑃𝑃𝐶𝐶𝑘𝑘)|𝑘𝑘 =
1…𝑁𝑁}, are subject to the following two constraints:

1. Non-collinear: The angle between any two vectors

in a triangle must be between 30°and 120°, that is

30° ≤ ∠ (𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐵𝐵𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗) ≤ 120°,

30° ≤ ∠ (𝑃𝑃𝐵𝐵𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑃𝑃𝐵𝐵𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗) ≤ 120°

30° ≤ ∠ (𝑃𝑃𝐶𝐶𝑘𝑘𝑃𝑃𝐵𝐵𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑃𝑃𝐶𝐶𝑘𝑘𝑃𝑃𝐴𝐴𝑘𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗) ≤ 120°

2. Long distance: The distance between any two
points in a triangle must be greater than 0.6 meters,
that is

 ‖𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐵𝐵𝑘𝑘̅̅ ̅̅ ̅̅ ̅‖ > 0.6 , ‖𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘̅̅ ̅̅ ̅̅ ̅‖ > 0.6 and ‖𝑃𝑃𝐵𝐵𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘̅̅ ̅̅ ̅̅ ̅‖ > 0.6

The formula for calculating the normal vector of the k-th
group of points is:

 𝑛𝑛𝑘𝑘 =
𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐵𝐵𝑘𝑘
⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ × 𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘

⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗

||𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐵𝐵𝑘𝑘
⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ × 𝑃𝑃𝐴𝐴𝑘𝑘𝑃𝑃𝐶𝐶𝑘𝑘

⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ||
⋯⋯⋯(𝑘𝑘 = 1,… ,𝑁𝑁) （6）

D. Multi-task Loss Function

One of the main contribution of this paper is to propose a
novel multi-task loss function𝐿𝐿𝑀𝑀𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 with three different

losses (depth loss, point cloud loss, and virtual normal loss).
The depth loss LDepth calculates the difference between the
true and estimated depth values, the point cloud loss LPointCloud
calculates the difference between the true and estimated point
cloud coordinates, and the virtual normal loss LVirtualNormal
calculates the vector difference between the true and

estimated virtual normals. 𝐿𝐿𝑀𝑀𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 is calculated as follows:

𝐿𝐿𝑀𝑀𝑢𝑢𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 = 𝛼𝛼1 × 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀ℎ + 𝛼𝛼2 × 𝐿𝐿𝐶𝐶𝑀𝑀𝐶𝐶𝑢𝑢𝑑𝑑𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀 +
 𝛼𝛼3 × 𝐿𝐿𝑉𝑉𝑀𝑀𝑉𝑉𝑀𝑀𝑢𝑢𝑀𝑀𝑀𝑀𝑉𝑉𝐶𝐶𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀 (7)

here, 𝛼𝛼1, 𝛼𝛼2 and 𝛼𝛼3 are the weights of the depth loss, point
cloud loss, and virtual normal loss, respectively, which adjust
the contribution of the three losses in the multi-task loss
function.

 It is related to the device, such as using lidar to obtain
depth values. In certain areas such as sky and the dark

⚫ Depth Loss (LDepth)

Let 𝑑𝑑𝑀𝑀 and 𝑑𝑑𝑀𝑀 ′ be respectively the true and estimated depth

values of the i-th pixel in an image, and T be the total number
of valid depth point in this image1, then

 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀ℎ =
1
𝑀𝑀 ∑

|𝑑𝑑𝑖𝑖−𝑑𝑑𝑖𝑖′|
𝑑𝑑𝑖𝑖

𝑀𝑀
𝑀𝑀=1 （8）

3.5.2 Point Cloud Loss (LPointCloud)

According to Eq. (5), the corresponding pixel coordinate (u,v)
can be reconstructed by a point cloud coordinate (X, Y, Z) as

 {
𝑢𝑢 = 𝑋𝑋𝑓𝑓𝑥𝑥

𝑍𝑍 + 𝑢𝑢0
𝑣𝑣 = 𝑌𝑌𝑓𝑓𝑦𝑦

𝑍𝑍 + 𝑣𝑣0

 （9）

Let (u, v) be the pixel coordinate of an image pixel, (X, Y, Z)

and (𝑋𝑋′, 𝑌𝑌′, 𝑍𝑍′) be its corresponding point cloud coordinates

derived respectively from the ground-truth and estimated
depth maps. To calculate LPointCloud, X and Y are deliberately
paired with 𝑍𝑍′, and a distinct pixel coordinate (𝑢𝑢′,𝑣𝑣′) can be

derived from the specified point cloud coordinate (X, Y, Z′)
as

 {
𝑢𝑢′ = 𝑋𝑋𝑓𝑓𝑥𝑥

𝑍𝑍′ + 𝑢𝑢0
𝑣𝑣′ = 𝑌𝑌𝑓𝑓𝑦𝑦

𝑍𝑍′ + 𝑣𝑣0
 （10）

Conceptually, if the estimated depth d' is close to the ground-
truth depth d, then Z and Z' will be close too, leading to (u,v)
and (u',v') being close. However, if the difference between d'
and d is large, then Z and Z' will also differ a lot, causing (u,v)
and (u',v') to differ greatly. Therefore, the proposed LPointCloud
provides a consistency constraint between the depth map and
the point cloud for the depth estimation model, and the
resulting pixel coordinates can be used to calculate the point

cloud loss. As a result, √(𝑢𝑢 − 𝑢𝑢′)2 + (𝑣𝑣 − 𝑣𝑣′)2
can be utilized in calculating and provides a consistency
constraint between the depth map and the point cloud for the
depth estimation model. However, Equation (9) denotes the

same amount of deviation (𝑍𝑍 − 𝑍𝑍′) in the optical axis

direction, both deviation (𝑢𝑢 − 𝑢𝑢′) and (𝑣𝑣 − 𝑣𝑣′) will increase

proportionally with the values of 𝑋𝑋 and 𝑌𝑌. It means the pixels

away from the image center are prone to have larger deviation

for both 𝑢𝑢 − 𝑢𝑢′and 𝑣𝑣 − 𝑣𝑣′ than those near the image center.

Hence, 𝐿𝐿𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀𝐶𝐶𝑀𝑀𝐶𝐶𝑢𝑢𝑑𝑑 should be normalized as

√(𝑢𝑢𝑖𝑖−𝑢𝑢𝑖𝑖
′

𝑢𝑢𝑖𝑖−𝑢𝑢0
)
2
+ (𝑣𝑣𝑖𝑖−𝑣𝑣𝑖𝑖

′

𝑣𝑣𝑖𝑖−𝑣𝑣0
)
2
. Furthermore, to avoid the abnormality

of dividing by zero, the pixels with a 𝑢𝑢0 horizontal coordinate

or a 𝑣𝑣0 vertical coordinate should have a different

normalization design. Let A be the set of points with both non

𝑢𝑢0 horizontal coordinates and non 𝑣𝑣0 vertical coordinates, B

be the set of points with 𝑢𝑢0 horizontal coordinates and non

𝑣𝑣0 vertical coordinates, and C be the set of points with non

regions that absorb light completely, distance values cannot
be acquired. Consequently, these areas generate missing
values, rendering them invalid points.

740

𝑢𝑢0 horizontal coordinates and 𝑣𝑣0 vertical coordinates. Finally,

𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is designed as

𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1
𝑇𝑇 (∑ √(𝑃𝑃𝑖𝑖−𝑃𝑃𝑖𝑖

′

𝑃𝑃𝑖𝑖−𝑃𝑃0
)

2
+ (𝑣𝑣𝑖𝑖−𝑣𝑣𝑖𝑖

′

𝑣𝑣𝑖𝑖−𝑣𝑣0
)

2
𝑃𝑃∈𝐴𝐴 +

 ∑ |𝑣𝑣𝑖𝑖−𝑣𝑣𝑖𝑖
′

𝑣𝑣𝑖𝑖−𝑣𝑣0
|𝑃𝑃∈𝐵𝐵 + ∑ |𝑃𝑃𝑖𝑖−𝑃𝑃𝑖𝑖

′

𝑃𝑃𝑖𝑖−𝑃𝑃0
|𝑃𝑃∈𝑃𝑃) （11）

⚫ Calculation of virtual normal loss (LVirtualNormal)

Assuming that 𝑛𝑛𝑃𝑃 and 𝑛𝑛𝑃𝑃
′ are respectively the ground-truth and

estimated virtual normal vectors of the i-th pixel in the image,
then LVirtualNormal is computed as

 𝐿𝐿𝑉𝑉𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃𝑉𝑉𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝑃𝑃 = 1
𝑇𝑇 ∑ ||𝑛𝑛𝑃𝑃 − 𝑛𝑛𝑃𝑃

′||1
𝑉𝑉
𝑃𝑃=1 （12）

IV. EXPERIMENT

In this section, we evaluate the performance of combining
different loss functions with scale-invariant loss functions.
We train and test these models using the NYU-Mini datasets.
NYU Depth v2 [20] is an indoor dataset that contains RGB
images and depth maps. The data was captured using
Microsoft Kinect in various indoor scenes, with a uniform
image resolution of 480 × 640. The dataset contains 120K
training samples and 654 test samples, with a maximum valid
depth value of 10 meters. Due to experimental cost
considerations, we proportionally cropped the data from each
scene in the NYU-Depth-v2 dataset to create a subset of
1,597 images. We used this subset, named NYU-Mini, for
training in this paper. For testing, we did not make any
adjustments and used the original 654 test samples. Figure 3
shows three examples of NYU Depth v2. The first row shows
RGB images, and the second row shows their corresponding
depth maps.

Fig. 3. Example images from NYU Depth v2. The first
row shows RGB images, and the second row shows their
corresponding depth maps.

Table 7 compares the performance of depth estimation using
different loss functions on NYU-Mini Dataset, including
scale-invariant loss (SI), point cloud conversion loss (PCL),
and virtual normal loss (VNL). SI was proposed by Eigen [9]
and has become a commonly used loss function in the field
of depth estimation. In our experiments, SI is used to compute
the depth loss. The weight values for the loss functions are
shown as 𝛼𝛼1 = 10, 𝛼𝛼2 = 8 and 𝛼𝛼3 = 4 for Eq. (7). The

results demonstrate that the proposed multi-task loss function
effectively improves the accuracy of depth estimation. Figure

3 shows two estimated depth maps using different loss
functions. The red-box regions highlight the places where our
method performs better.

Table 7: Performance Comparison with Different loss
functions on the NYU-Mini Dataset. SI is scale-invariant loss,
PTL is point cloud loss, and VNL is virtual normal loss.

SI 0.7653 0.1687

SI+PCL 0.7786 0.1659

SI+VNL 0.7817 0.1616

SI+PCL+VNL 0.7850 0.1633

V. CONCLUSION

This paper introduces a novel semi-multi-task loss
function aimed at enhancing the performance of monocular
depth estimation. Our experimental results clearly
demonstrate a significant performance boost when utilizing
this proposed loss function. Our comprehensive approach
maximizes the adaptability of point clouds. In addition to
generating the fundamental depth map, it provides
supplementary supervision by incorporating point clouds and
surface normals. Notably, this method can be computed
without the need for training additional subnetworks, thus
demonstrating high generality and practical utility. In the
future, we plan to extend the application of this proposed loss
function to various other depth estimation modules to assess
its overall effectiveness.

ACKNOWLEDGEMENT

This work is supported by the National Science Council of
Taiwan with grant no. NSTC 112-2221-E-216-004.

REFERENCES

[1] M. Alam, M.D. Samad, L. Vidyaratne, A. Glandon, K.M. Iftekharuddin,

Survey on deep neural networks in speech and vision systems,
Neurocomputing 417, pp. 302–321, 2020.

[2] J. Valentin, A. Kowdle, J.T. Barron, N. Wadhwa, M. Dzitsiuk, M.
Schoenberg, V. Verma, A. Csaszar, E. Turner, I. Dryanovski, et al.,
Depth from motion for smartphone, ACM Trans. Graph. (TOG) 37, pp.
1–19 , 2018.

[3] X. Yang, H. Luo, Y. Wu, Y. Gao, C. Liao, K.T. Cheng, Reactive
obstacle avoidance of monocular quadrotors with online adapted depth
prediction network, Neurocomputing 325, pp. 142–158, 2019.

[4] Y.M. Tsai, Y.L. Chang, L.G. Chen, Block-based vanishing line and
vanishing point detection for 3d scene reconstruction, in: 2006
International Symposium on Intelligent Signal Processing and
Communications, IEEE, pp. 586–589, 2006.

[5] C. Tang, C. Hou, Z. Song, Depth recovery and refinement from a single
image using defocus cues, J. Mod. Opt. 62, pp. 441-448, 2015.

[6] R. Zhang, P.S. Tsai, J.E. Cryer, M. Shah, Shape-from-shading: a survey,
IEEE Trans. Pattern Anal. Mach. Intell. 21, pp. 690-706, 1999.

[7] P. Zhang, J. Liu, X. Wang, T. Pu, C. Fei, Z. Guo, Stereoscopic video
saliency detection based on spatiotemporal correlation and depth
confidence optimization, Neurocomputing 377, pp. 256–268, 2020.

[8] R. Mur-Artal, J.M.M. Montiel, J.D. Tardos, Orb-slam: a versatile and
accurate monocular slam system, IEEE Trans. Robot. 31, pp. 1147–
1163, 2015.

[9] D. Eigen, C. Puhrsch, R. Fergus, Depth map prediction from a single
image using a multi-scale deep network, Adv. Neural Inf. Process.
Syst., pp. 2366–2374, 2014.

[10] J.M. Facil, B. Ummenhofer, H. Zhou, L. Montesano, T. Brox, J. Civera,
Camconvs: Camera-aware multi-scale convolutions for single-view

741

depth, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, IEEE, pp. 11826–11835, 2020.

[11] E. Ricci, W. Ouyang, X. Wang, N. Sebe, et al., Monocular depth
estimation using multi-scale continuous crfs as sequential deep
networks, IEEE Trans. Pattern Anal. Mach. Intell. 41, pp. 1426–1440,
2018.

[12] C. Godard, O. Mac Aodha, G.J. Brostow, Unsupervised monocular
depth estimation with left-right consistency, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp.
270–279, 2017.

[13] X. Ye, X. Ji, B. Sun, S. Chen, Z. Wang, H. Li, Drm-slam: towards
dense reconstruction of monocular slam with scene depth fusion,
Neurocomputing 396, pp. 76–91, 2020.

[14] A. Tonioni, M. Poggi, S. Mattoccia, L. Di Stefano, Unsupervised
domain adaptation for depth prediction from images, IEEE Trans.
Pattern Anal. Mach. Intelligence, 42, pp. 2396-2409, 2020.

[15] X. Fei, A. Wong, S. Soatto, Geo-supervised visual depth prediction,
IEEE Robot. Autom. Lett. 4, pp. 1661–1668, 2019.

[16] J. Qiu, Z. Cui, Y. Zhang, X. Zhang, S. Liu, B. Zeng, M. Pollefeys,
Deeplidar: deep surface normal guided depth prediction for outdoor
scene from sparse lidar data and single color image, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp.
3313–3322, 2019.

[17] S. Bhat, I. Alhashim, P. Wonka, Adabins: Depth estimation using
adaptive bins. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4009-4018, 2021.

[18] M. Tan, Q. Le, Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine
learning, PMLR, pp. pp. 6105-6114, 2019.

[19] W. Yin, Y. Liu, C. Shen, Y. Yan, Enforcing geometric constraints of
virtual normal for depth prediction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5684-5693, 2019.

[20] Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012, October).
Indoor segmentation and support inference from rgbd images. In
European conference on computer vision (pp. 746-760). Springer,
Berlin, Heidelberg.

742

