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Abstract—Deep recommender systems are essential for 

providing personalized recommendations in various domains, 

such as e-commerce, social media, and entertainment. In deep 

recommender systems, feature selection plays a vital role as it 

identifies the features that are the most informative for predicting 

user preferences. However, most existing deep recommender 

systems are designed without a systematic approach to feature 

selection. They typically feed all available features into their 

sophisticated neural networks, or experts choose features 

manually or employ existing feature selection algorithms. These 

approaches might potentially undermine the accuracy and 

effectiveness of recommender systems, since they execute feature 

selection separately from the subsequent model of the 

recommender system, without considering the model’s prediction 
behavior. Moreover, existing feature selection methods tend to 

select a fixed set of features, which is not adaptable to the dynamic 

and complex environments of practical recommender systems, 

where the importance of a specific feature can vary across user-

item interactions. To address these challenges, we propose a novel 

adaptive feature selection framework, Probabilistic and Adaptive 

Feature Selection in Deep Recommendation Systems (ProAdaFS), 

for deep recommender systems. ProAdaFS leverages the power of 

two existing adaptive feature selection techniques (AdaFS and 

AutoField) with significant modifications to enhance feature 

selection. To identify the most informative features corresponding 

to a subsequent recommendation task model, we design a network 

controller that dynamically and adaptively adjusts the probability 

of selecting a feature field, generates scores and re-evaluates 

feature fields to identify informative features. Our experiments 

were conducted on two real-world e-commerce recommender 

systems datasets. The experimental results demonstrate the 

effectiveness of ProAdaFS in improving the feature selection 

process in deep recommender systems.  

Keywords—Feature Selection, Recommender Systems, AutoML   

I. INTRODUCTION  

“People don’t know what they want until you show it to 
them” ~ Steve Jobs. The quote best describes human behavior in 
terms of how we humans perceive products and consume them. 

In the same scenario, electronic retailers and content providers 
offer a wide selection of products, to match consumers with the 
most appropriate products for user satisfaction and maintaining 
loyalty. As another way of boosting their sales and accumulating 
views on their content, more retailers have become interested 
and are working tirelessly in developing and engineering 
sophisticated recommendation system architectures. Some of 
the leading e-commerce platforms such as Amazon.com, 
Netflix, YouTube, and other social media platforms such as X, 
formerly known as Twitter, and TikTok, have integrated 
recommendation systems to add a dimension to user experience, 
particularly suggesting products, services, and content to users 
based on their preferences and behaviors. 

The phrase “Garbage in, garbage out,” commonly used in 
machine learning, emphasizes that the model's performance 
depends on the quality of input features provided. This holds 
true for deep recommender systems (DRS), where feature 
quality significantly influences recommendation performance. 
Despite extensive research in DRS, the majority focuses on 
engineering complex neural architectures, often overlooking 
feature selection—a crucial process to enhance the model's 
performance [2]. In reality, electronic retail and content 
platforms collect a broad range of user features on their websites 
and applications. These encompass user demographics (e.g., id, 
gender, age), item or content preferences (e.g., category, brand), 
user behaviors (e.g., clicks, views, likes, purchases), and 
contextual information (e.g., time, location). However, not all 
these features should be input to the network, because irrelevant 
features can hamper recommendation performance, slow down 
model optimization, and increase computational costs [3].  

Several classical feature selection methods (hand-crafted, 
wrapper, filter, embedded) [4,5,6,12,13], have shown 
effectiveness, but they fall short in deep recommender systems, 
because their selection process is independent from the 
subsequent DRS model, disregarding the model’s prediction 
model behavior [17] . Recent methods [2,3,17,20] have utilized 
the AutoML approach to identify and automatically select the 
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most predictive features for DRS models and their performance 
has been convincing.  

Adaptive feature selection (AdaFS) [2] and AutoField [3] 
being the state of art methods. AdaFS adaptively selects 
significant features for each data instance across user-item 
interactions making it suitable for dynamic and complex 
environments of practical recommender systems as it improves 
the performance over the classical methods. AutoField is able to 
automatically adjust the probability of selecting a particular 
feature field. Both methods employ a controller network that 
serves as the primary mechanism for the generation of feature 
importance and the regulation of feature probabilities. 

To contribute to the development of adaptive methods for 
DRS. This study introduces a method called Probabilistic and 
Adaptive Feature Selection (ProAdaFS). An AutoML 
framework for automating adaptive feature selection for varying 
user-item interactions. Leveraging AutoField's probabilistic 
guidance and AdaFS adaptive hard selection with some 
significant modifications, to enhance feature selection for more 
accurate and tailored recommendations in deep recommendation 
models. 

II. FRAMEWORK 

In this section, we discuss our method approach (ProAdaFS). 
We will detail and highlight the overview of our framework 
including other important modules, and its optimization 
process.  

 

Fig. 1. Overview of  the ProAdaFS’s Framework 

A. Framework Overview 

To enhance the process of adaptive and dynamic feature 
selection, we propose a framework that automatically scores, re-
values, and selects the optimal subset of features that are further 
utilized in a subsequent DRS network. We have illustrated the 
framework architecture in Fig 1.  

The framework follows the fundamentals of the DRS 
network in which we have included the embedding and MLP 
components. We propose a DRS framework with a controller 
network based on AutoField and AdaFS. The controller scores, 
weighs, assigns, and adjusts probabilities to each feature field 
according to their perceived importance in correspondence with 
the user-item interaction. We then perform hard selection to 
reserve the top k features.  

B. Deep Recommendation Architecture 

In the following subsections, we discuss the basic 
components that build our model, the MLP and embedding 
component, and the modifications we have made to improve the 
feature adaptive selection process. 

Embedding component. Deep recommender systems 
typically use categorical input features, that are sparse and high-
dimensional. To address this, binarization and projection can be 
used to convert these features into a lower-dimensional 
representation. 

Binarization is a technique for converting categorical 
features into binary vectors. Each unique value within a 
categorical feature field corresponds to a binary representation, 
with the number of dimensions determined by the number of 
unique values. For example, the categorical feature field 
"Preferred Payment Method" with three unique values ("Credit 
Card", "PayPal", and "Bitcoin") could be binarized as follows: 
[1,0,0], [0,1,0], and [0,0,1].   

Projection is a mathematical transformation that projects 
binary vectors into a lower-dimensional feature space. This is 
achieved by multiplying each binary vector by a learnable 
weight matrix: The binary representation of N features can be 
obtained by concatenation; for example, x = [ 𝑥𝑥1 , 𝑥𝑥2 …𝑥𝑥𝑁𝑁],  𝑥𝑥𝑛𝑛 
∈ ℝ𝐷𝐷𝑛𝑛 𝑥𝑥𝑛𝑛  representing a binary vector (where n is the index of 
the feature field) by a learnable weight matrix 𝐴𝐴𝑛𝑛. The matrix 
𝐴𝐴𝑛𝑛 has dimensions d × 𝐷𝐷𝑛𝑛 where d is the predefined embedding 
size for the projection space and 𝐷𝐷𝑛𝑛  is the dimension of the 
original binary vector for the 𝑛𝑛𝑡𝑡ℎ feature field. We can represent 
it as:  

                                       𝒆𝒆𝒏𝒏 = 𝑨𝑨𝒏𝒏𝒙𝒙𝒏𝒏                                             (1) 

Suppose that the input dataset has N features and a batch size 
of M, we can denote the projection of the final embedding of the 
user-item interaction as :  

                              E = [𝒆𝒆𝟏𝟏𝒎𝒎, 𝒆𝒆𝟐𝟐𝒎𝒎, ... , 𝒆𝒆𝑵𝑵𝒎𝒎]                                   (2) 

MLP Component. Multi-layer perceptrons (MLPs) are 
common components in deep recommender systems. They are 
used to further process and extract features from the dense 
embedding obtained from the embedding component. MLPs 
consist of fully connected layers with non-linear activation 
functions to capture high-order feature interactions. The output 
layer of an MLP can be equipped with a specific activation 
function tailored for a specific task, such as prediction or 
classification. 

An MLP comprises L hidden layers, and we can detail each 
hidden layer as ℎ𝑙𝑙 where 𝑙𝑙 ranges from 1 to L as follows: ℎ𝑙𝑙 is 
computed as a non-linear transformation of the weighted sum of 
inputs:  

                              h = 𝜑𝜑  (𝑊𝑊𝑙𝑙 ℎ𝑙𝑙−1 + 𝑏𝑏𝑙𝑙  )                                (4) 

Where ℎ𝑙𝑙 represents the output of the 𝑙𝑙𝑡𝑡ℎ hidden layer, 𝑊𝑊𝑙𝑙 is 
the weight matrix specific to the l-the hidden layer. ℎ𝑙𝑙−1 is the 
output of the previous 𝑙𝑙 − 1𝑡𝑡ℎ hidden layer or the input 𝑬𝑬 for 𝑙𝑙 = 
1. 𝑏𝑏𝑙𝑙  is the bias vector for the 𝑙𝑙-the hidden layer. 𝜑𝜑 (·) is the 
activation function (e.g., ReLU) applied elementwise. The first 
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hidden layer ℎ0 is initialized with the dense feature embeddings 
𝑬𝑬 obtained from the Embedding component:  

                                          ℎ0 = E                                              (5) 

The output layer of an MLP can be equipped with a specific 
activation function tailored for a specific task, such as prediction 
or classification. For example, the sigmoid function is 
commonly used for regression tasks, and the Softmax function 
is commonly used for multi-class classification tasks. The 
general prediction function can be represented as follows: 

                                  �̂�𝒚 = 𝜎𝜎(𝑊𝑊0ℎ𝐿𝐿 + 𝑏𝑏0)                                   (6) 

Where �̂�𝒚 is the prediction, 𝑊𝑊0 is the weight matrix for the 
output layer. 𝑏𝑏0 is the bias vector for the output layer 𝜎𝜎 (·) is the 
task-specific activation function.  

III. METHOD APPROACH 

As mentioned earlier ProAdaFS is based on two existing 
algorithms, with modifications to apply towards adaptive feature 
selection. The following are main contributions: 

• ProAdaFS utilizes Gumbel-Softmax [9] instead of 
Softmax to generate probabilities for feature fields based 
on their importance.  Unlike Softmax, which can output 
the same probability for different input values, Gumbel-
Softmax preserves the diversity and distinctiveness of 
the features by adding random noise to the input values. 
This is one method of preventing the controller from 
exhibiting bias towards dominating feature patterns. In 
practice, we have applied different techniques to achieve 
this. 

• ProAdaFS implements a reevaluation process in which it 
incorporates a function with a threshold to adjust the 
weights of feature fields under the guidance of their final 
allocated probabilities prior to feature selection. This is 
to enable the controller to adjust to variations in user-
item interaction and avoid missing predictive features. 

Controller. Before discussing feature selection with 
ProAdaFS network controller, it is necessary to process the 
embedded data. The embedding size of the feature fields varies 
significantly, which can reduce the reliability of the probabilities 
and weights calculated by the controller. To address this, we use 
BatchNorm [7] to ensure that the controller generates reliable 
probabilities and weights. We can present BatchNorm as: 

                        �̂�𝑒𝑛𝑛
𝑚𝑚  =     𝑒𝑒𝑛𝑛

𝑚𝑚 -  𝐸𝐸𝐵𝐵
𝑛𝑛                                       (7) 

                                    √𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵
𝑛𝑛 + є 

where n belongs [1, N] representing the 𝑛𝑛𝑡𝑡ℎ feature and  
m is of the 𝑚𝑚𝑡𝑡ℎ   data example in the input batch, 𝐸𝐸𝐵𝐵

𝑛𝑛 
calculates the mini-batch mean and 𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵

𝑛𝑛  gives the value of the 
min-batch variance for feature embeddings in 𝑛𝑛𝑡𝑡ℎ feature filed. 
To control for exceedingly small values by 𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵

𝑛𝑛  we add a 
constant to the variance before calculating the standard 
deviation (𝜀𝜀). We can denote the feature embeddings after this 
process as: 

                           �̂�𝐸 = [�̂�𝑒1
𝑚𝑚 , �̂�𝑒2

𝑚𝑚 , . . .,  �̂�𝑒𝑁𝑁
𝑚𝑚]                                (8) 

Feature selection Module: Our feature selection module 
combines a directed acyclic graph (DAG) [8] and Gumbel-
Softmax [9] to generate probabilities for each feature field, 
considering both feature dependencies and importance scores. 
The controller uses these probabilities to draw binary decisions 
for each feature field, with the threshold values acting as weights 
for control purposes. 

According to the controller's parameter pair (𝛼𝛼𝑚𝑚
1 , 𝛼𝛼𝑚𝑚

0 ) each 
feature field will be allocated a probability for either to be 
selected or dropped in the final stage of hard selection. Here, 𝛼𝛼𝑚𝑚

1  
signifies the probability of selecting a feature,  𝛼𝛼𝑚𝑚

0  represents the 
probability of dropping it. Our sampling can be formulated as: 

                      �̂�𝑒𝑛𝑛
𝑚𝑚 = ( 𝛼𝛼𝑚𝑚

1  . 𝑣𝑣1 + 𝛼𝛼𝑚𝑚
0  . 𝑣𝑣0 ) . 𝑒𝑒𝑛𝑛

𝑚𝑚                       (9) 

                           �̂�𝐸 = [�̂�𝑒1
𝑚𝑚 , �̂�𝑒2

𝑚𝑚 , . . .,  �̂�𝑒𝑁𝑁
𝑚𝑚]                              (10) 

where 𝑒𝑒𝑛𝑛
𝑚𝑚 is the embedding of the 𝑛𝑛𝑡𝑡ℎ feature field. 𝑣𝑣1 and 

𝑣𝑣2 are vectors with the same length of 𝑒𝑒𝑛𝑛
𝑚𝑚  acting as a threshold 

in which we assume 𝑣𝑣1 is close to 1 and 𝑣𝑣0 is close to 0, and 
their weighted sum embedding of ( 𝛼𝛼𝑚𝑚

1  𝑣𝑣1𝑒𝑒𝑛𝑛
𝑚𝑚 + 𝛼𝛼𝑚𝑚

0  𝑣𝑣0 𝑒𝑒𝑛𝑛
𝑚𝑚  )  is 

1. And �̂�𝑒𝑛𝑛
𝑚𝑚 is of soft selection of the 𝑛𝑛𝑡𝑡ℎ feature field as in (10), 

in which  �̂�𝐸 is the soft selection of the feature embeddings E of 
(2). 

The formula for Gumbel-Softmax is as follows. 

𝑝𝑝𝑚𝑚
𝑗𝑗

  =                          exp ((log 𝛼𝛼𝑚𝑚
𝑗𝑗

 + 𝑔𝑔𝑗𝑗) / 𝜏𝜏                            (11) 

              exp ((log 𝛼𝛼𝑚𝑚
1  + 𝑔𝑔1) / 𝜏𝜏 + exp ((log 𝛼𝛼𝑚𝑚

0  + 𝑔𝑔0) / 𝜏𝜏 

where 𝑝𝑝𝑚𝑚
𝑗𝑗

 is the final allocated probability to the 𝑛𝑛𝑡𝑡ℎ feature 

field in the 𝑚𝑚𝑡𝑡ℎ data example, 𝛼𝛼𝑚𝑚
𝑗𝑗

 is the importance score of 𝑛𝑛𝑡𝑡ℎ 

feature field in the 𝑚𝑚𝑡𝑡ℎ data example  𝑔𝑔𝑗𝑗 is a random variable 

sampled from the Gumbel distribution, and τ is a temperature 
parameter that controls the smoothness of the approximation. 

The final allocated probability can be formulated as: 

                        �̂�𝑒𝑛𝑛
𝑚𝑚 = ( 𝑝𝑝𝑚𝑚

1  . 𝑣𝑣1 + 𝑝𝑝𝑚𝑚
0  . 𝑣𝑣0 ) . 𝑒𝑒𝑛𝑛

𝑚𝑚                    (12) 

The binary decision nodes are represented as two-
dimensional vectors, each feature field consisting of two 
parameters (𝛼𝛼𝑚𝑚

1 , 𝛼𝛼𝑚𝑚
0 ), that initiate the feature selection process.  

We begin by assigning an equivalent pair of values (𝛼𝛼𝑛𝑛
1, 𝛼𝛼𝑛𝑛

0) to 
each feature field, initializing them at 𝛼𝛼𝑛𝑛

1  = 𝛼𝛼𝑛𝑛
0  = 0.5. During 

training, the parameters 𝛼𝛼𝑛𝑛
1  increase while 𝛼𝛼𝑛𝑛

0  decreases 
according to their set threshold. Gumbel-Softmax adjusts these 
parameters accordingly to ensure an unbiased distribution, 
diversity, and distinctiveness of the feature fields. 

In Equation (10), soft selection assigns probabilities to 
feature embeddings based on their importance, but it does not 
eliminate the impact of irrelevant features on the final 
recommendation. To address this, we implement hard selection 
using k-max pooling after re-evaluation process by the 
controller.  During re-evaluation (Fig 2), we reactivate the 
controller to score feature importance incorporating a threshold 
mentioned earlier to control Gumbel Softmax noise, we take �̂�𝑒𝑛𝑛

𝑚𝑚 

of 𝑛𝑛𝑡𝑡ℎ  feature field with a probability of  𝑝𝑝𝑚𝑚
𝑗𝑗

  to calculate its 
feature weight 𝛼𝛼𝑛𝑛

𝑚𝑚. 

For hard selection (Fig 3), we use the k-max pooling 
technique from AdaFS [2], selecting the top k features based on 
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their weighted sums (𝛼𝛼𝑛𝑛𝑚𝑚 ) and masking the rest as zeros. We 
then reweighted the selected weights to ensure that their sum 
equals 1 , maintaining reliability and reasonability. For instance, 
if we have feature weights for the 𝑛𝑛𝑡𝑡ℎ feature in 𝑚𝑚𝑡𝑡ℎ batch as: 
[0.7, 0.0, 0.4, 0.5,0.0 and predefine k as k=3. the selection 
module performs 3 max pooling, resulting in new feature 
weights [0.4375, 0.0, 0.25, 0.3125, 0.0] by reweighting them 
accordingly based on the sum of the new weights (1.6). We can 
denote this process as.   

  �̂�𝑒𝑛𝑛𝑚𝑚 (𝑝𝑝𝑚𝑚𝑗𝑗 ) = (𝑝𝑝𝑗𝑗1�̃�𝛼1𝑚𝑚�̂�𝑒1𝑚𝑚 . 1 + 𝑝𝑝𝑗𝑗0 �̃�𝛼1𝑚𝑚�̂�𝑒𝑛𝑛𝑚𝑚 . 0). 𝑒𝑒𝑛𝑛𝑚𝑚 = 𝑝𝑝𝑗𝑗1�̃�𝛼𝑛𝑛𝑚𝑚�̂�𝑒𝑛𝑛𝑚𝑚   (13) 

where 1 and 0 are all-one and all-zero vectors, respectively, 
with the same length of 𝑒𝑒𝑛𝑛𝑚𝑚. On the basis of (13) , we can obtain 

the �̂�𝐸 as in (8) and then replace the embeddings E of (2) by �̂�𝑬 to 
perform feature selection with our proposed controller. After 
this, selected features are fed into a subsequent model as shown 
in Fig. 1 for the final prediction. 

    

Fig. 2. The controller network and  re-evaluation process 

IV. AN OPTIMIZATION METHOD     

In this section, we explain our optimization approach for 

updating the framework parameters. 𝑾𝑾 denotes parameters for 
the DRS network (including Embedding and MLP 
components), while θ represents the controller network 
parameters crucial for feature selection. 

Optimizing  and θ simultaneously on the same training 

batch can lead to overfitting. To address this issue, we employ 
the improved differentiable architecture search (I-DARTS) 

technique [11]. We alternate updates for  and θ on different 

dataset partitions — switching between training and validation 

data. 𝑾𝑾 is updated using training loss 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛  to optimize the 

DRS parameters, while θ is updated using validation loss 𝐿𝐿𝑣𝑣𝑡𝑡𝑣𝑣 , 
to optimize the controller parameters. This alternating update, 
called bi-level optimization, prevents overfitting and enhances 
the optimization of both the basic DRS and the controller 
network. We can denote this as: 

 
 
 
 

 
1 https://ailab.criteo.com/resources/ 

 
 

 

 

Fig. 3. The hard selection process 

 

                      min
𝜃𝜃

𝐿𝐿𝑣𝑣𝑡𝑡𝑣𝑣(𝑊𝑊∗(𝜽𝜽), 𝜽𝜽)                                         
                     s.t 𝑾𝑾∗ (𝜽𝜽) = arg min

𝑊𝑊
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛(W, 𝜽𝜽∗)                      (14) 

 
Algorithm 1 Optimization Algorithm of ProAdaFS Framework 

Input: Raw features {𝑒𝑒𝑛𝑛}, number of selected feature fields K, 

training epoch (t) ground-truth labels y.  
Output: K selected features for final recommendations 

1. Initialize DRS (W) and Controller ( 𝜽𝜽) parameters. 

2. for i=0; I < t; i++ do 
3.     Sample a min-batch of the training set. 
4.     Update W according to Equation (11) 
5. end for 

6. while not converged do 
7.     Sample a mini batch of the validation set.  
8.     Update θ according to equation (11) 
9. end while  

V. EXPERIMENT 

 In this section, we first describe our experimental setup and 
then evaluate the performance of the proposed framework. 

A. Dataset 

To evaluate our method, we used two publicly available 
datasets: Criteo1 and Avazu2. These datasets are used for online 
advertising in click-through rate prediction tasks and, they have 
39 and 23 features, respectively.  

B. Evaluation metrics 

Logloss and AUC were used to evaluate our method, 
because these are commonly used metrics for CTR prediction. 
A higher AUC and a lower Logloss indicate better performance. 
It is important to highlight that even a 0.001-level improvement 
in either metric is considered significant [1]. 

 

 

2 https://www.kaggle.com/c/avazu-ctr-prediction 
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Table 1: Comparison of performance of feature selection methods. * Indicates the statically significant improvements (i.e., p ≤ 0.05 for the two-sided t-test 

over the best baseline.   

Dataset Model     No Selection     AutoField AdaFS         OptFS    ProAdaFS 

 
 
Avazu 

 AUC ↑    Logloss ↓ AUC ↑       Logloss ↓ AUC ↑    Logloss ↓ AUC ↑      Logloss ↓ AUC ↑     Logloss ↓ 

DeepFM 0.7813      0.3790 0.7821        0.3784 0.7831      0.3781 0.7847       0.3771 0.7843       0.3779 

DCN 0.7789      0.3787 0.7791        0.3786 0.7799      0.3777 0.7837       0.3751 0.7867*     0.3731* 

W&D 0.7781      0.3806 0.7785        0.3804 0.7797      0.3801 0.7763       0.3815 0.7787       0.3803 

 
Criteo 

DeepFM 0.8057      0.4451 0.8059        0.4439 0.8079      0.4438 08043        0.4463 0.8088*     0.4429*    

DCN 0.8063      0.4455 0.8061        0.4452 0.8074      0.4434 0.8065       0.4449 0.8076       0.4436 

W&D 0.8051      0.4462 0.8063        0.4451 0.8057      0.4464 0.8060       0.4454 0.8086*     0.4433* 

C. Performance comparison and DRS models 

We compare the performance of ProAdaFS with the 
following state-of-the-art baselines (i). AdaFS [2] which 
adaptively select predictive feature fields of each data instance 
via a controller, (ii) AutoField [3] which selects global 
informative feature fields using neural network architecture 
search techniques via the drive of controller generated feature 
fields probabilities and third (iii) we compare it with OptFS [17] 
which also globally select informative feature fields in 
accordance with feature interactions. We evaluate its 
performance on existing DRS models for recommendation 
tasks: W&D [1], DCN [18], and DeepFM [19]. 

D. Implementation details 

Our approach is implemented using the PyTorch Public 
Library for recommendation models3 and we utilize the official 
implementation for AdaFS 4  and AutoField 5 . We set the 
embedding size for the feature fields to 16 and used a two-layer 
MLP with sizes [16, 8], employing ReLU as the activation 
function. The controller involved generating four pairs of 
probabilities through a combination of DAG and Gumbel-

Softmax alternatively ( 𝛼𝛼𝑚𝑚1  and 𝛼𝛼𝑚𝑚0  , 𝑝𝑝𝑚𝑚𝑗𝑗  ( 𝑝𝑝𝑗𝑗1  and 𝑝𝑝𝑗𝑗0  equation 

(13)). We utilized k-Max pooling for hard selection post-re-
evaluation. Additional parameters included a batch size of  
2048, a learning rate of 0.0001, a dropout rate of 0.2, 

temperature ( 𝜏𝜏 ) of 0.01-1, and a GPU GEFORCE RTX 3080 

for running experiments.  

VI. OVERALL PERFORMANCE 

Table 1 illustrates the performance of existing various state-
of-the-art feature selection methods on three different DRS 
models. It can be observed that almost all methods are superior 
to No selection portraying performance gains to some extent. In 
comparison with ProAdaFS, ProAdaFS can be considered to 
show significant improvements over other baselines, though 
there is a limited improvement, but ProAdaFs is covering some 
of the limitation (i) AutoField and OptFS have a limitation of 
globally fixed feature selection in which it does not consider 
varying feature importance for each data instance [20],  (ii) 
AdaFS performs better, however its controller and the feature 
selection process could easily lead to bias to dominant features, 
whilst ProAdaFS can maintain, revaluate and manage feature 

 
3 https://github.com/rixwew/pytorch-fm 
4 https://github.com/Applied-Machine-Learning-Labs/AdaFS 

dependency which make it robust to variations and biasness in 
the selection process. 

VII. ANALYZING PROADAFS 

Table 2: Transferability of ProAdaFs on Avazu. 

Model     No Selection    ProAdaFS 

 AUC ↑    Logloss ↓ AUC ↑     Logloss ↓ 

DeepFM 0.7813      0.3790 0.7843*       0.3779* 

DCN 0.7789      0.3787 0.7867*       0.3731* 

W&D 0.7781      0.3806 0.7787*       0.3803* 

“*” Indicates the statically significant improvements (i.e., p ≤ 0.05 for the 
two-sided t-test over No Selection. 

 

Transferability Study analysis. In this section, we conduct 
an analysis to validate the transferability of ProAdaFS. 
Following AdaFS [2], we freeze the parameters of a trained 
controller, to utilize it for training popular existing DRS models 
(W&D, DeepFM and DCN). From the results in Table 2, it can 
be noted that there is a significant improvement in all models, 
indicating that ProAdaFS can consistently select the most 
optimal predictive features for different DRS models in which 
we can draw conclusions that ProAdaFS can be implemented in 
real world recommender systems. 
 

Parameter analysis. In Fig. 4 we demonstrate the 
effectiveness of ProAdaFs with a varying K which is a crucial 
hyperparameter towards the performance of ProAdaFS. Other 
hyperparameter are not changed. K represents the number of 
feature fields to be selected. The experiment is conducted on 
Avazu dataset, which has 22 features. We set K to [7, 9, 11,13, 
15,18], Looking at ProAdaFS method with different K values, 
we notice some important patterns in how the number of 
selected features affects the model’s performance. According to 
Fig 4 we can observe that the performance is better when K =9 
and K= 11, meaning that  having a moderate number of features 
i.e. 40%-50% leads to the best results but again we can notice 
from K= 15 and K=18 the models performance begins to pick 
up from a downgraded performance of K=13 of which we can 
conclude that ProAdaFS can handle varying feature scenarios 
better by adapting to the right balance between few and many 
features. From this performance we can agree to consider that a 
larger K value can either improve model performance or 
downgrade it by introducing irrelevant features and a smaller 
value might miss the predictive ones. In short, it is essential to  

5 https://github.com/fuyuanlyu/autofs-in-ctr 
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Fig 4. K parameter analysis, comparison of various K values. From Left AUC and Right Logloss results of ProAdaFS on Avazu. 

 
choose the right K value. Finally, it is worth mentioning that K 
value is manually chosen. 

VIII. CONCLUSION 

In this study, we introduce a feature selection method and an 
AutoML-based feature selection model, ProAdaFS, to enhance 
adaptive feature selection in DRS Models. Overall, our work 
highlights improving dynamic and adaptive feature selection in 
deep recommender systems for various recommendation tasks. 
ProAdaFS approach leverages probability and adaptive 
techniques to efficiently select the most predictive features. 
Through extensive experiments on two benchmark datasets, we 
demonstrate our approach's capability to enhance dynamic and 
adaptive feature selection. ProAdaFS contributes to the gap 
between classical methods and adaptive methods. While 
parameter fine-tuning posed a challenge, we acknowledge the 
need for further studies, particularly in exploring dynamic K 
parameter analysis. 
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