
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

ProAdaFS: Probabilistic and Adaptive Feature

Selection in Deep Recommendation Systems

1st Hyston Kayange
School of Computer Science and

Engineering

Soongsil University

Seoul, South Korea
hyston@soongsil.ac.kr

2nd Jonghyeok Mun
School of Computer Science and

Engineering

Soongsil University

Seoul, South Korea
jonghyeokmun@soongsil.ac.kr

3rd Yohan Park
School of Computer Science and

Engineering

Soongsil University

Seoul, South Korea
imjin3027@soongsil.ac.kr

4th Jongsun Choi
School of Computer Science and

Engineering

Soongsil University

Seoul, South Korea
jongsun.choi@ssu.ac.kr

5th Jaeyoung Choi
School of Computer Science and Engineering

Soongsil University

Seoul, South Korea
choi@ssu.ac.kr

Abstract—Deep recommender systems are essential for

providing personalized recommendations in various domains,

such as e-commerce, social media, and entertainment. In deep

recommender systems, feature selection plays a vital role as it

identifies the features that are the most informative for predicting

user preferences. However, most existing deep recommender

systems are designed without a systematic approach to feature

selection. They typically feed all available features into their

sophisticated neural networks, or experts choose features

manually or employ existing feature selection algorithms. These

approaches might potentially undermine the accuracy and

effectiveness of recommender systems, since they execute feature

selection separately from the subsequent model of the

recommender system, without considering the model’s prediction
behavior. Moreover, existing feature selection methods tend to

select a fixed set of features, which is not adaptable to the dynamic

and complex environments of practical recommender systems,

where the importance of a specific feature can vary across user-

item interactions. To address these challenges, we propose a novel

adaptive feature selection framework, Probabilistic and Adaptive

Feature Selection in Deep Recommendation Systems (ProAdaFS),

for deep recommender systems. ProAdaFS leverages the power of

two existing adaptive feature selection techniques (AdaFS and

AutoField) with significant modifications to enhance feature

selection. To identify the most informative features corresponding

to a subsequent recommendation task model, we design a network

controller that dynamically and adaptively adjusts the probability

of selecting a feature field, generates scores and re-evaluates

feature fields to identify informative features. Our experiments

were conducted on two real-world e-commerce recommender

systems datasets. The experimental results demonstrate the

effectiveness of ProAdaFS in improving the feature selection

process in deep recommender systems.

Keywords—Feature Selection, Recommender Systems, AutoML

I. INTRODUCTION

“People don’t know what they want until you show it to
them” ~ Steve Jobs. The quote best describes human behavior in
terms of how we humans perceive products and consume them.

In the same scenario, electronic retailers and content providers
offer a wide selection of products, to match consumers with the
most appropriate products for user satisfaction and maintaining
loyalty. As another way of boosting their sales and accumulating
views on their content, more retailers have become interested
and are working tirelessly in developing and engineering
sophisticated recommendation system architectures. Some of
the leading e-commerce platforms such as Amazon.com,
Netflix, YouTube, and other social media platforms such as X,
formerly known as Twitter, and TikTok, have integrated
recommendation systems to add a dimension to user experience,
particularly suggesting products, services, and content to users
based on their preferences and behaviors.

The phrase “Garbage in, garbage out,” commonly used in
machine learning, emphasizes that the model's performance
depends on the quality of input features provided. This holds
true for deep recommender systems (DRS), where feature
quality significantly influences recommendation performance.
Despite extensive research in DRS, the majority focuses on
engineering complex neural architectures, often overlooking
feature selection—a crucial process to enhance the model's
performance [2]. In reality, electronic retail and content
platforms collect a broad range of user features on their websites
and applications. These encompass user demographics (e.g., id,
gender, age), item or content preferences (e.g., category, brand),
user behaviors (e.g., clicks, views, likes, purchases), and
contextual information (e.g., time, location). However, not all
these features should be input to the network, because irrelevant
features can hamper recommendation performance, slow down
model optimization, and increase computational costs [3].

Several classical feature selection methods (hand-crafted,
wrapper, filter, embedded) [4,5,6,12,13], have shown
effectiveness, but they fall short in deep recommender systems,
because their selection process is independent from the
subsequent DRS model, disregarding the model’s prediction
model behavior [17] . Recent methods [2,3,17,20] have utilized
the AutoML approach to identify and automatically select the

759979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

most predictive features for DRS models and their performance
has been convincing.

Adaptive feature selection (AdaFS) [2] and AutoField [3]
being the state of art methods. AdaFS adaptively selects
significant features for each data instance across user-item
interactions making it suitable for dynamic and complex
environments of practical recommender systems as it improves
the performance over the classical methods. AutoField is able to
automatically adjust the probability of selecting a particular
feature field. Both methods employ a controller network that
serves as the primary mechanism for the generation of feature
importance and the regulation of feature probabilities.

To contribute to the development of adaptive methods for
DRS. This study introduces a method called Probabilistic and
Adaptive Feature Selection (ProAdaFS). An AutoML
framework for automating adaptive feature selection for varying
user-item interactions. Leveraging AutoField's probabilistic
guidance and AdaFS adaptive hard selection with some
significant modifications, to enhance feature selection for more
accurate and tailored recommendations in deep recommendation
models.

II. FRAMEWORK

In this section, we discuss our method approach (ProAdaFS).
We will detail and highlight the overview of our framework
including other important modules, and its optimization
process.

Fig. 1. Overview of the ProAdaFS’s Framework

A. Framework Overview

To enhance the process of adaptive and dynamic feature
selection, we propose a framework that automatically scores, re-
values, and selects the optimal subset of features that are further
utilized in a subsequent DRS network. We have illustrated the
framework architecture in Fig 1.

The framework follows the fundamentals of the DRS
network in which we have included the embedding and MLP
components. We propose a DRS framework with a controller
network based on AutoField and AdaFS. The controller scores,
weighs, assigns, and adjusts probabilities to each feature field
according to their perceived importance in correspondence with
the user-item interaction. We then perform hard selection to
reserve the top k features.

B. Deep Recommendation Architecture

In the following subsections, we discuss the basic
components that build our model, the MLP and embedding
component, and the modifications we have made to improve the
feature adaptive selection process.

Embedding component. Deep recommender systems
typically use categorical input features, that are sparse and high-
dimensional. To address this, binarization and projection can be
used to convert these features into a lower-dimensional
representation.

Binarization is a technique for converting categorical
features into binary vectors. Each unique value within a
categorical feature field corresponds to a binary representation,
with the number of dimensions determined by the number of
unique values. For example, the categorical feature field
"Preferred Payment Method" with three unique values ("Credit
Card", "PayPal", and "Bitcoin") could be binarized as follows:
[1,0,0], [0,1,0], and [0,0,1].

Projection is a mathematical transformation that projects
binary vectors into a lower-dimensional feature space. This is
achieved by multiplying each binary vector by a learnable
weight matrix: The binary representation of N features can be
obtained by concatenation; for example, x = [𝑥𝑥1 , 𝑥𝑥2 …𝑥𝑥𝑁𝑁], 𝑥𝑥𝑛𝑛
∈ ℝ𝐷𝐷𝑛𝑛 𝑥𝑥𝑛𝑛 representing a binary vector (where n is the index of
the feature field) by a learnable weight matrix 𝐴𝐴𝑛𝑛. The matrix
𝐴𝐴𝑛𝑛 has dimensions d × 𝐷𝐷𝑛𝑛 where d is the predefined embedding
size for the projection space and 𝐷𝐷𝑛𝑛 is the dimension of the
original binary vector for the 𝑛𝑛𝑡𝑡ℎ feature field. We can represent
it as:

 𝒆𝒆𝒏𝒏 = 𝑨𝑨𝒏𝒏𝒙𝒙𝒏𝒏 (1)

Suppose that the input dataset has N features and a batch size
of M, we can denote the projection of the final embedding of the
user-item interaction as :

 E = [𝒆𝒆𝟏𝟏𝒎𝒎, 𝒆𝒆𝟐𝟐𝒎𝒎, ... , 𝒆𝒆𝑵𝑵𝒎𝒎] (2)

MLP Component. Multi-layer perceptrons (MLPs) are
common components in deep recommender systems. They are
used to further process and extract features from the dense
embedding obtained from the embedding component. MLPs
consist of fully connected layers with non-linear activation
functions to capture high-order feature interactions. The output
layer of an MLP can be equipped with a specific activation
function tailored for a specific task, such as prediction or
classification.

An MLP comprises L hidden layers, and we can detail each
hidden layer as ℎ𝑙𝑙 where 𝑙𝑙 ranges from 1 to L as follows: ℎ𝑙𝑙 is
computed as a non-linear transformation of the weighted sum of
inputs:

 h = 𝜑𝜑 (𝑊𝑊𝑙𝑙 ℎ𝑙𝑙−1 + 𝑏𝑏𝑙𝑙) (4)

Where ℎ𝑙𝑙 represents the output of the 𝑙𝑙𝑡𝑡ℎ hidden layer, 𝑊𝑊𝑙𝑙 is
the weight matrix specific to the l-the hidden layer. ℎ𝑙𝑙−1 is the
output of the previous 𝑙𝑙 − 1𝑡𝑡ℎ hidden layer or the input 𝑬𝑬 for 𝑙𝑙 =
1. 𝑏𝑏𝑙𝑙 is the bias vector for the 𝑙𝑙-the hidden layer. 𝜑𝜑 (·) is the
activation function (e.g., ReLU) applied elementwise. The first

760

hidden layer ℎ0 is initialized with the dense feature embeddings
𝑬𝑬 obtained from the Embedding component:

 ℎ0 = E (5)

The output layer of an MLP can be equipped with a specific
activation function tailored for a specific task, such as prediction
or classification. For example, the sigmoid function is
commonly used for regression tasks, and the Softmax function
is commonly used for multi-class classification tasks. The
general prediction function can be represented as follows:

 �̂�𝒚 = 𝜎𝜎(𝑊𝑊0ℎ𝐿𝐿 + 𝑏𝑏0) (6)

Where �̂�𝒚 is the prediction, 𝑊𝑊0 is the weight matrix for the
output layer. 𝑏𝑏0 is the bias vector for the output layer 𝜎𝜎 (·) is the
task-specific activation function.

III. METHOD APPROACH

As mentioned earlier ProAdaFS is based on two existing
algorithms, with modifications to apply towards adaptive feature
selection. The following are main contributions:

• ProAdaFS utilizes Gumbel-Softmax [9] instead of
Softmax to generate probabilities for feature fields based
on their importance. Unlike Softmax, which can output
the same probability for different input values, Gumbel-
Softmax preserves the diversity and distinctiveness of
the features by adding random noise to the input values.
This is one method of preventing the controller from
exhibiting bias towards dominating feature patterns. In
practice, we have applied different techniques to achieve
this.

• ProAdaFS implements a reevaluation process in which it
incorporates a function with a threshold to adjust the
weights of feature fields under the guidance of their final
allocated probabilities prior to feature selection. This is
to enable the controller to adjust to variations in user-
item interaction and avoid missing predictive features.

Controller. Before discussing feature selection with
ProAdaFS network controller, it is necessary to process the
embedded data. The embedding size of the feature fields varies
significantly, which can reduce the reliability of the probabilities
and weights calculated by the controller. To address this, we use
BatchNorm [7] to ensure that the controller generates reliable
probabilities and weights. We can present BatchNorm as:

 �̂�𝑒𝑛𝑛
𝑚𝑚 = 𝑒𝑒𝑛𝑛

𝑚𝑚 - 𝐸𝐸𝐵𝐵
𝑛𝑛 (7)

 √𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵
𝑛𝑛 + є

where n belongs [1, N] representing the 𝑛𝑛𝑡𝑡ℎ feature and
m is of the 𝑚𝑚𝑡𝑡ℎ data example in the input batch, 𝐸𝐸𝐵𝐵

𝑛𝑛
calculates the mini-batch mean and 𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵

𝑛𝑛 gives the value of the
min-batch variance for feature embeddings in 𝑛𝑛𝑡𝑡ℎ feature filed.
To control for exceedingly small values by 𝑉𝑉𝑉𝑉𝑉𝑉𝐵𝐵

𝑛𝑛 we add a
constant to the variance before calculating the standard
deviation (𝜀𝜀). We can denote the feature embeddings after this
process as:

 �̂�𝐸 = [�̂�𝑒1
𝑚𝑚 , �̂�𝑒2

𝑚𝑚 , . . ., �̂�𝑒𝑁𝑁
𝑚𝑚] (8)

Feature selection Module: Our feature selection module
combines a directed acyclic graph (DAG) [8] and Gumbel-
Softmax [9] to generate probabilities for each feature field,
considering both feature dependencies and importance scores.
The controller uses these probabilities to draw binary decisions
for each feature field, with the threshold values acting as weights
for control purposes.

According to the controller's parameter pair (𝛼𝛼𝑚𝑚
1 , 𝛼𝛼𝑚𝑚

0) each
feature field will be allocated a probability for either to be
selected or dropped in the final stage of hard selection. Here, 𝛼𝛼𝑚𝑚

1
signifies the probability of selecting a feature, 𝛼𝛼𝑚𝑚

0 represents the
probability of dropping it. Our sampling can be formulated as:

 �̂�𝑒𝑛𝑛
𝑚𝑚 = (𝛼𝛼𝑚𝑚

1 . 𝑣𝑣1 + 𝛼𝛼𝑚𝑚
0 . 𝑣𝑣0) . 𝑒𝑒𝑛𝑛

𝑚𝑚 (9)

 �̂�𝐸 = [�̂�𝑒1
𝑚𝑚 , �̂�𝑒2

𝑚𝑚 , . . ., �̂�𝑒𝑁𝑁
𝑚𝑚] (10)

where 𝑒𝑒𝑛𝑛
𝑚𝑚 is the embedding of the 𝑛𝑛𝑡𝑡ℎ feature field. 𝑣𝑣1 and

𝑣𝑣2 are vectors with the same length of 𝑒𝑒𝑛𝑛
𝑚𝑚 acting as a threshold

in which we assume 𝑣𝑣1 is close to 1 and 𝑣𝑣0 is close to 0, and
their weighted sum embedding of (𝛼𝛼𝑚𝑚

1 𝑣𝑣1𝑒𝑒𝑛𝑛
𝑚𝑚 + 𝛼𝛼𝑚𝑚

0 𝑣𝑣0 𝑒𝑒𝑛𝑛
𝑚𝑚) is

1. And �̂�𝑒𝑛𝑛
𝑚𝑚 is of soft selection of the 𝑛𝑛𝑡𝑡ℎ feature field as in (10),

in which �̂�𝐸 is the soft selection of the feature embeddings E of
(2).

The formula for Gumbel-Softmax is as follows.

𝑝𝑝𝑚𝑚
𝑗𝑗

 = exp ((log 𝛼𝛼𝑚𝑚
𝑗𝑗

 + 𝑔𝑔𝑗𝑗) / 𝜏𝜏 (11)

 exp ((log 𝛼𝛼𝑚𝑚
1 + 𝑔𝑔1) / 𝜏𝜏 + exp ((log 𝛼𝛼𝑚𝑚

0 + 𝑔𝑔0) / 𝜏𝜏

where 𝑝𝑝𝑚𝑚
𝑗𝑗

 is the final allocated probability to the 𝑛𝑛𝑡𝑡ℎ feature

field in the 𝑚𝑚𝑡𝑡ℎ data example, 𝛼𝛼𝑚𝑚
𝑗𝑗

 is the importance score of 𝑛𝑛𝑡𝑡ℎ

feature field in the 𝑚𝑚𝑡𝑡ℎ data example 𝑔𝑔𝑗𝑗 is a random variable

sampled from the Gumbel distribution, and τ is a temperature
parameter that controls the smoothness of the approximation.

The final allocated probability can be formulated as:

 �̂�𝑒𝑛𝑛
𝑚𝑚 = (𝑝𝑝𝑚𝑚

1 . 𝑣𝑣1 + 𝑝𝑝𝑚𝑚
0 . 𝑣𝑣0) . 𝑒𝑒𝑛𝑛

𝑚𝑚 (12)

The binary decision nodes are represented as two-
dimensional vectors, each feature field consisting of two
parameters (𝛼𝛼𝑚𝑚

1 , 𝛼𝛼𝑚𝑚
0), that initiate the feature selection process.

We begin by assigning an equivalent pair of values (𝛼𝛼𝑛𝑛
1, 𝛼𝛼𝑛𝑛

0) to
each feature field, initializing them at 𝛼𝛼𝑛𝑛

1 = 𝛼𝛼𝑛𝑛
0 = 0.5. During

training, the parameters 𝛼𝛼𝑛𝑛
1 increase while 𝛼𝛼𝑛𝑛

0 decreases
according to their set threshold. Gumbel-Softmax adjusts these
parameters accordingly to ensure an unbiased distribution,
diversity, and distinctiveness of the feature fields.

In Equation (10), soft selection assigns probabilities to
feature embeddings based on their importance, but it does not
eliminate the impact of irrelevant features on the final
recommendation. To address this, we implement hard selection
using k-max pooling after re-evaluation process by the
controller. During re-evaluation (Fig 2), we reactivate the
controller to score feature importance incorporating a threshold
mentioned earlier to control Gumbel Softmax noise, we take �̂�𝑒𝑛𝑛

𝑚𝑚

of 𝑛𝑛𝑡𝑡ℎ feature field with a probability of 𝑝𝑝𝑚𝑚
𝑗𝑗

 to calculate its
feature weight 𝛼𝛼𝑛𝑛

𝑚𝑚.

For hard selection (Fig 3), we use the k-max pooling
technique from AdaFS [2], selecting the top k features based on

761

their weighted sums (𝛼𝛼𝑛𝑛𝑚𝑚) and masking the rest as zeros. We
then reweighted the selected weights to ensure that their sum
equals 1 , maintaining reliability and reasonability. For instance,
if we have feature weights for the 𝑛𝑛𝑡𝑡ℎ feature in 𝑚𝑚𝑡𝑡ℎ batch as:
[0.7, 0.0, 0.4, 0.5,0.0 and predefine k as k=3. the selection
module performs 3 max pooling, resulting in new feature
weights [0.4375, 0.0, 0.25, 0.3125, 0.0] by reweighting them
accordingly based on the sum of the new weights (1.6). We can
denote this process as.

 �̂�𝑒𝑛𝑛𝑚𝑚 (𝑝𝑝𝑚𝑚𝑗𝑗) = (𝑝𝑝𝑗𝑗1�̃�𝛼1𝑚𝑚�̂�𝑒1𝑚𝑚 . 1 + 𝑝𝑝𝑗𝑗0 �̃�𝛼1𝑚𝑚�̂�𝑒𝑛𝑛𝑚𝑚 . 0). 𝑒𝑒𝑛𝑛𝑚𝑚 = 𝑝𝑝𝑗𝑗1�̃�𝛼𝑛𝑛𝑚𝑚�̂�𝑒𝑛𝑛𝑚𝑚 (13)

where 1 and 0 are all-one and all-zero vectors, respectively,
with the same length of 𝑒𝑒𝑛𝑛𝑚𝑚. On the basis of (13) , we can obtain

the �̂�𝐸 as in (8) and then replace the embeddings E of (2) by �̂�𝑬 to
perform feature selection with our proposed controller. After
this, selected features are fed into a subsequent model as shown
in Fig. 1 for the final prediction.

Fig. 2. The controller network and re-evaluation process

IV. AN OPTIMIZATION METHOD

In this section, we explain our optimization approach for

updating the framework parameters. 𝑾𝑾 denotes parameters for
the DRS network (including Embedding and MLP
components), while θ represents the controller network
parameters crucial for feature selection.

Optimizing and θ simultaneously on the same training

batch can lead to overfitting. To address this issue, we employ
the improved differentiable architecture search (I-DARTS)

technique [11]. We alternate updates for and θ on different

dataset partitions — switching between training and validation

data. 𝑾𝑾 is updated using training loss 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 to optimize the

DRS parameters, while θ is updated using validation loss 𝐿𝐿𝑣𝑣𝑡𝑡𝑣𝑣 ,
to optimize the controller parameters. This alternating update,
called bi-level optimization, prevents overfitting and enhances
the optimization of both the basic DRS and the controller
network. We can denote this as:

1 https://ailab.criteo.com/resources/

Fig. 3. The hard selection process

 min
𝜃𝜃

𝐿𝐿𝑣𝑣𝑡𝑡𝑣𝑣(𝑊𝑊∗(𝜽𝜽), 𝜽𝜽)
 s.t 𝑾𝑾∗ (𝜽𝜽) = arg min

𝑊𝑊
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛(W, 𝜽𝜽∗) (14)

Algorithm 1 Optimization Algorithm of ProAdaFS Framework

Input: Raw features {𝑒𝑒𝑛𝑛}, number of selected feature fields K,

training epoch (t) ground-truth labels y.
Output: K selected features for final recommendations

1. Initialize DRS (W) and Controller (𝜽𝜽) parameters.

2. for i=0; I < t; i++ do
3. Sample a min-batch of the training set.
4. Update W according to Equation (11)
5. end for

6. while not converged do
7. Sample a mini batch of the validation set.
8. Update θ according to equation (11)
9. end while

V. EXPERIMENT

 In this section, we first describe our experimental setup and
then evaluate the performance of the proposed framework.

A. Dataset

To evaluate our method, we used two publicly available
datasets: Criteo1 and Avazu2. These datasets are used for online
advertising in click-through rate prediction tasks and, they have
39 and 23 features, respectively.

B. Evaluation metrics

Logloss and AUC were used to evaluate our method,
because these are commonly used metrics for CTR prediction.
A higher AUC and a lower Logloss indicate better performance.
It is important to highlight that even a 0.001-level improvement
in either metric is considered significant [1].

2 https://www.kaggle.com/c/avazu-ctr-prediction

762

Table 1: Comparison of performance of feature selection methods. * Indicates the statically significant improvements (i.e., p ≤ 0.05 for the two-sided t-test

over the best baseline.

Dataset Model No Selection AutoField AdaFS OptFS ProAdaFS

Avazu

 AUC ↑ Logloss ↓ AUC ↑ Logloss ↓ AUC ↑ Logloss ↓ AUC ↑ Logloss ↓ AUC ↑ Logloss ↓

DeepFM 0.7813 0.3790 0.7821 0.3784 0.7831 0.3781 0.7847 0.3771 0.7843 0.3779

DCN 0.7789 0.3787 0.7791 0.3786 0.7799 0.3777 0.7837 0.3751 0.7867* 0.3731*

W&D 0.7781 0.3806 0.7785 0.3804 0.7797 0.3801 0.7763 0.3815 0.7787 0.3803

Criteo

DeepFM 0.8057 0.4451 0.8059 0.4439 0.8079 0.4438 08043 0.4463 0.8088* 0.4429*

DCN 0.8063 0.4455 0.8061 0.4452 0.8074 0.4434 0.8065 0.4449 0.8076 0.4436

W&D 0.8051 0.4462 0.8063 0.4451 0.8057 0.4464 0.8060 0.4454 0.8086* 0.4433*

C. Performance comparison and DRS models

We compare the performance of ProAdaFS with the
following state-of-the-art baselines (i). AdaFS [2] which
adaptively select predictive feature fields of each data instance
via a controller, (ii) AutoField [3] which selects global
informative feature fields using neural network architecture
search techniques via the drive of controller generated feature
fields probabilities and third (iii) we compare it with OptFS [17]
which also globally select informative feature fields in
accordance with feature interactions. We evaluate its
performance on existing DRS models for recommendation
tasks: W&D [1], DCN [18], and DeepFM [19].

D. Implementation details

Our approach is implemented using the PyTorch Public
Library for recommendation models3 and we utilize the official
implementation for AdaFS 4 and AutoField 5 . We set the
embedding size for the feature fields to 16 and used a two-layer
MLP with sizes [16, 8], employing ReLU as the activation
function. The controller involved generating four pairs of
probabilities through a combination of DAG and Gumbel-

Softmax alternatively (𝛼𝛼𝑚𝑚1 and 𝛼𝛼𝑚𝑚0 , 𝑝𝑝𝑚𝑚𝑗𝑗 (𝑝𝑝𝑗𝑗1 and 𝑝𝑝𝑗𝑗0 equation

(13)). We utilized k-Max pooling for hard selection post-re-
evaluation. Additional parameters included a batch size of
2048, a learning rate of 0.0001, a dropout rate of 0.2,

temperature (𝜏𝜏) of 0.01-1, and a GPU GEFORCE RTX 3080

for running experiments.

VI. OVERALL PERFORMANCE

Table 1 illustrates the performance of existing various state-
of-the-art feature selection methods on three different DRS
models. It can be observed that almost all methods are superior
to No selection portraying performance gains to some extent. In
comparison with ProAdaFS, ProAdaFS can be considered to
show significant improvements over other baselines, though
there is a limited improvement, but ProAdaFs is covering some
of the limitation (i) AutoField and OptFS have a limitation of
globally fixed feature selection in which it does not consider
varying feature importance for each data instance [20], (ii)
AdaFS performs better, however its controller and the feature
selection process could easily lead to bias to dominant features,
whilst ProAdaFS can maintain, revaluate and manage feature

3 https://github.com/rixwew/pytorch-fm
4 https://github.com/Applied-Machine-Learning-Labs/AdaFS

dependency which make it robust to variations and biasness in
the selection process.

VII. ANALYZING PROADAFS

Table 2: Transferability of ProAdaFs on Avazu.

Model No Selection ProAdaFS

 AUC ↑ Logloss ↓ AUC ↑ Logloss ↓

DeepFM 0.7813 0.3790 0.7843* 0.3779*

DCN 0.7789 0.3787 0.7867* 0.3731*

W&D 0.7781 0.3806 0.7787* 0.3803*

“*” Indicates the statically significant improvements (i.e., p ≤ 0.05 for the
two-sided t-test over No Selection.

Transferability Study analysis. In this section, we conduct
an analysis to validate the transferability of ProAdaFS.
Following AdaFS [2], we freeze the parameters of a trained
controller, to utilize it for training popular existing DRS models
(W&D, DeepFM and DCN). From the results in Table 2, it can
be noted that there is a significant improvement in all models,
indicating that ProAdaFS can consistently select the most
optimal predictive features for different DRS models in which
we can draw conclusions that ProAdaFS can be implemented in
real world recommender systems.

Parameter analysis. In Fig. 4 we demonstrate the
effectiveness of ProAdaFs with a varying K which is a crucial
hyperparameter towards the performance of ProAdaFS. Other
hyperparameter are not changed. K represents the number of
feature fields to be selected. The experiment is conducted on
Avazu dataset, which has 22 features. We set K to [7, 9, 11,13,
15,18], Looking at ProAdaFS method with different K values,
we notice some important patterns in how the number of
selected features affects the model’s performance. According to
Fig 4 we can observe that the performance is better when K =9
and K= 11, meaning that having a moderate number of features
i.e. 40%-50% leads to the best results but again we can notice
from K= 15 and K=18 the models performance begins to pick
up from a downgraded performance of K=13 of which we can
conclude that ProAdaFS can handle varying feature scenarios
better by adapting to the right balance between few and many
features. From this performance we can agree to consider that a
larger K value can either improve model performance or
downgrade it by introducing irrelevant features and a smaller
value might miss the predictive ones. In short, it is essential to

5 https://github.com/fuyuanlyu/autofs-in-ctr

763

Fig 4. K parameter analysis, comparison of various K values. From Left AUC and Right Logloss results of ProAdaFS on Avazu.

choose the right K value. Finally, it is worth mentioning that K
value is manually chosen.

VIII. CONCLUSION

In this study, we introduce a feature selection method and an
AutoML-based feature selection model, ProAdaFS, to enhance
adaptive feature selection in DRS Models. Overall, our work
highlights improving dynamic and adaptive feature selection in
deep recommender systems for various recommendation tasks.
ProAdaFS approach leverages probability and adaptive
techniques to efficiently select the most predictive features.
Through extensive experiments on two benchmark datasets, we
demonstrate our approach's capability to enhance dynamic and
adaptive feature selection. ProAdaFS contributes to the gap
between classical methods and adaptive methods. While
parameter fine-tuning posed a challenge, we acknowledge the
need for further studies, particularly in exploring dynamic K
parameter analysis.

IX. ACKNOWLEDGEMENTS

This work was supported by an Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (No.2022-0-
00218).

REFERENCES

[1] H.-T. Cheng et al., “Wide & Deep Learning for Recommender
Systems,” Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, pp.7-10, Sept. 2016.

[2] W. Lin, X. Zhao, Y. Wang, T. Xu, and X. Wu, “AdaFS: Adaptive
Feature Selection in Deep Recommender System,” in Proceedings

of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Association for Computing Machinery,
Aug. 2022, pp. 3309–3317.

[3] Y. Wang, X. Zhao, T. Xu, and X. Wu, “AutoField: Automating
Feature Selection in Deep Recommender Systems,” in WWW 2022 -
Proceedings of the ACM Web Conference 2022, Association for
Computing Machinery, Inc, Apr. 2022, pp. 1977–1986.

[4] R. Kohavi and G. H. John, “Wrappers for feature subset selection.”,
Artificial Intelligence, Vol.97, pp.273-324, December 1997.

[5] Huan Liu and Rudy Setiono, “Chi2: Feature selection and
discretization of numeric attributes,” Proceedings of 7th IEEE
International Conference on Tools with Artificial Intelligence,
November 1995.

[6] R. Tibshiranit, “Regression Shrinkage and Selection via the Lasso,”,

Journal of the Royal Statistical Society, Vol.58, pp 267-288,
January 1996.

[7] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”,
Proceedings of the 32nd International Conference on Machine
Learning, pp.448-456, 2015.

[8] A. Nilsson, C. Bonander, U. Strömberg, and J. Björk, “A directed
acyclic graph for interactions,” Int J Epidemiol, vol. 50, no. 2, pp.
613–619, April 2021.

[9] E. Jang, S. Gu, and B. Poole, “Categorical Reparameterization with
Gumbel-Softmax,” arxiv:1611.01144, Nov. 2016.

[10] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient
Neural Architecture Search via Parameter Sharing,” Proceedings of
the 35th International Conference on Machine Learning Vol.80,
pp.4095-4104, Feb2018,

[11] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable
Architecture Search,” arxiv:1806.09055, Jun. 2018.

[12] S. Wold, K. Esbensen, and P. Geladi, “Principal Component
Analysis.” Chemometrics and Intelligent Laboratory Systems,
Vol.2, pp. 37-52, August 1987.

[13] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,”
Front Neurorobot, vol. 7, Dec 2013.

[14] Y. Zhai, “Grouping features in big dimensionality,” Nanyang
Technological University, 2016.

[15] X. Zhao, “Adaptive and automated deep recommender systems,”
ACM SIGWEB Newsletter, vol. 2022, no. Spring, pp. 1–4, May
2022.

[16] L. Pack Kaelbling, M. L. Littman, A. W. Moore, “Reinforcement
Learning: A Survey,” Journal of Artificial Intelligence Research,
Vol.4, May 1996.

[17] F. Lyu, X. Tang, D. Liu, L. Chen, X. He and X. Liu: “Optimizing
Feature Set for Click-Through Rate Prediction”, in Proceeding of
the ACM web Conference 2023, Apr.2023, pp. 3386-3395.

[18] R. Wang, B. Fu, G. Fu, M. Wang: “Deep & Cross Network for Ad
Click Predictions “. In Proceedings of the ADKDD’17, Aug. 2017,
Article.:12, pp.1-7.

[19] H. Guo, R. Tang, Y. Ye, Z. Li, X. He: “DeepFM: A Factorization-
Machine based Neural Network for CTR Prediction”, in
proceedings of the 26th international Joint Conference on Artificial
Intelligence, Mar. 2017, pp. 1725-1731.

[20] Y. Lee, Y. Jeong, K. Park, S. Kang: “MvFS: Multi-View Feature
Selection for Recommender System”, in Proceedings of the 32nd
ACM International Conference on Information and Knowledge
Management, Oct. 2023, pp. 4048-4052.

764

