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Abstract—Federated learning preserves privacy by decentral-
ized training of individual client devices, ensuring only model
weights are shared centrally. However, the data heterogeneity
across clients presents challenges. This paper focuses on repre-
sentation learning, a variant of personalized federated learning.
According to various studies, the representation learning model
can be divided into two: the base layer, shared and updated to
the server, and the head layer, localized to individual clients.
The novel approach exclusively utilizes the base layer for both
local and global training, arguing that the head layer might
introduce noise due to data heterogeneity. This can potentially
affect accuracy, and the head layer is used only for fine-tuning
after training to capture unique client data characteristics. Here,
we observed that prolonged base training can diminish accuracy
in the post-fine-tuning. As a countermeasure, we proposed a
method to determine the best round for fine-tuning based on
monitoring the standard deviation of test accuracy across clients.
This strategy aims to generalize the global model for all the clients
before fine-tuning. The study highlights the downside of excessive
base training on fine-tuning accuracy and introduces a novel
approach to pinpoint optimal fine-tuning moments, thereby min-
imizing computational and communication overheads. Similarly,
we achieved a better accuracy of 53.6% than other approaches
while there’s a trade-off of minute communication round.

Index Terms—federated learning(FL), data heterogeneity, per-
sonalized federated learning(PFL), representation learning, meta-
learning

I. INTRODUCTION

In the era of digitalization and big data, concerns over
privacy data protection have taken center stage in global
discussions. Legal regulations, such as GDPR [1] in Europe,
restricted the collection and sharing of client data for coopera-
tion. As a result, it is essential to safeguard personal informa-
tion while also learning from heterogeneous data distributed
across various devices, like mobile phones. Federated learning
[2] provides some basic privacy to the user by avoiding the
sharing of the client’s data directly to a central server. In this
approach, model training occurs on each edge device (e.g.,
smartphones), and only the model weights are shared with the
central server.

In real-world scenarios, clients are heterogeneous, and their
data distributions can vary significantly. Such diversity across
user data has led to exploring various methods in federated

learning, such as FedProx [3], SCAFFOLD [4] etc., to ad-
dress the client drift problem. However, these approaches do
not capture the unique local characteristics of heterogeneous
clients and do not fit the client’s personalized data better.
This led to the introduction of personalized federated learning
(PFL), which aims to generalize a global model and better
fit on the client’s local data. One of the approaches of PFL
that has been used in this study is representation learning. In
representation learning, specific layers of deep neural networks
extract personalized patterns from the client’s input data.
Similarly, the shallower layers detect low-level features from
images, representing common input data characteristics. In
contrast, deeper layers discern high-level features or intricate
patterns more tailored to a specific task.

Representation learning within a federated learning frame-
work isn’t fundamentally different from its role in conventional
deep learning. In this context, the deep layers of each client’s
model are trained to reflect the unique characteristics of their
local data. These locally learned representations can then be
transmitted to the central server to inform the training of the
global model. To delve deeper, as detailed in [8], [9], [10],
[11], [12], the model is divided into two parts: the base and
the head. The base is shared among all clients and updated on
the server, while the head remains with each client, managing
specific data traits or characteristics. Functionally, the base
part extracts features, whereas the head handles classification.
Communication predominantly takes place via the base part,
thus optimizing communication efficiency. By maintaining the
head part locally, the system tailors personalized models for
individual users and ensures enhanced data privacy.

In FedBABU [12], only the base layer is used for both
training the local model and aggregation of weights for the
global model. Due to significant client data heterogeneity,
the head layer might introduce noise during training, neg-
atively impacting accuracy. As a result, the head layer has
designated the role of fine-tuning at the last global training
round. Notably, given that training primarily uses the model’s
base, the variation in evaluation metrics is relatively minimal.
This lack of variance complicates the task of pinpointing
the optimal fine-tuning moment, and we often have to rely
on experience to make this determination. Furthermore, our
experiments indicate that over-extending the training of the
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base layer can lead to decreased accuracy after fine-tuning.
Our proposed work determines the best global round for fine-
tuning by monitoring the standard deviation of test accuracy
across all clients after each round. We used an approach similar
to meta-learning [5], [6], but our objective is to have the global
model, trained solely on the base layer, generalize across all
clients before fine-tuning begins. Thus, fine-tuning should start
at the optimal global round; having minimal accuracy disparity
among all clients indicates better generalization.

The contributions of this paper are as follows:
• We identified a new problem: excessive base training

negatively impacts accuracy after fine-tuning. The phe-
nomenon is demonstrated using experimental results.

• We presented an approach based on the standard deviation
method to identify the optimal fine-tuning point during
training, reducing unnecessary computation and commu-
nication costs.

The remainder of the paper is organized as follows. Sec-
tion II presents the related work in personalized federated
learning and representation learning. Section III presents the
representation-based personalized federated learning model.
Section IV provides the details of our proposed algorithm.
Section V demonstrates the performance evaluation of the
proposed algorithm compared to other existing personalized
federated algorithms. Finally, Section VI provides the conclu-
sion and future research directions.

II. RELATED WORK

A. Federated Learning

FedAvg [2] introduced the concept of federated learning as
a new method to train machine learning models directly on
devices while keeping data localized. The primary objective
was to address privacy concerns while using user data on edge
devices like smartphones.

B. Personalized Federated Learning

1) Meta Learning: Meta-learning, or learning to learn, has
gained significant attention in the machine learning (ML)
community. Its main objective is to train models on multiple
tasks, so that they can quickly adapt to new, unseen tasks.
MAML [5] aims to find a generalizable model initialization
that can be fine-tuned for a specific task with minimal data.
It is designed to learn a set of parameters from which a few
gradient steps can lead to effective task-specific fine-tuning.
Reptile, proposed later as a simpler alternative to MAML
[6], also focuses on meta-learning but with a less compu-
tationally intensive update mechanism. Unlike MAML’s bi-
level optimization, Reptile employs a form of moving average
of the task-specific parameters. Therefore, Reptile uses less
computation and memory than MAML.

2) Representation Learning: In real-world scenarios, client
data distributions are heterogeneous(non-iid). Representation
learning has been used to mitigate such statistical heterogene-
ity in which the model is split into two architectural parts:
the base (common shared) and the head (kept locally) [8].
The base layer shares similar common features across clients,

while the head layer utilizes each client’s unique features for
personalization. For instance, in a CNN model, the base can
be the convolutional layer, and the head layer can be the fully
connected layer because the fully connected layer (classifier)
represents specific features of the model. LG-FedAVG [9]
demonstrated that Representation Learning generalizes better
to new devices than other learning techniques. Additionally,
fair representations that obscure protected attributes were
effectively learned through adversarial training. FedRep [10]
leverages the distributed computational power among clients to
perform many local updates involving low-dimensional local
parameters for each representation update and demonstrates
fast convergence in linear regression problems. FedROD [11]
considered both local model accuracy and global model accu-
racy to address the discrepancy in validation methods between
general FL algorithms and personalized FL algorithms. Fed-
BABU [12] showed that when client data is heterogeneous,
the head can negatively impact personalization during training.
Thus, a fixed random head was used for the learning process.

However, all related studies have utilized a fixed number
of global rounds in their experimental setups. Specifically, in
[12], where fine-tuning is conducted at the final point of the
global round, it is challenging to find the optimal number of
global rounds empirically. Therefore, we propose a method
to halt training by using the standard deviation of the test
accuracy across clients to find the optimal fine-tuning point.

III. SYSTEM MODEL

TABLE I
LIST OF SYMBOLS USED

Symbol Description
N Total number of clients
Ci Client i, i ∈ {1, 2, . . . , N}
|Di| Number of data points for client i
|D| Total number of data points
T Total global rounds
F Fine tune rounds
R The optimal fine tune round
θi Local parameter for client i
θG Global model parameter
θi,b Base parameter shared among all clients
θi,p Head parameter of client i
ai Accuracy of client i
ā Average of each client’s accuracy
σ The standard deviation of each client’s accuracy
āw Average of each client’s accuracy in recent window
σw Standard deviation of each client’s accuracy in recent window

1) Federated Learning: We assume that each client Ci

possess data Di = (xi, yi) ∈ Rd, where i ∈ 1, 2, . . . , N
represents i-th client out of a total of N clients and d represents
the input dimension. Each client i updates its local model
parameter θi based on its data Di and the global model
parameter θG as

θ
(t+1)
i = θ

(t)
i − η∇θiL(Di, θ

(t)
i ), (1)

where η is the learning rate, ∇L is the gradient of the loss
function L, and t ∈ (1, 2, . . . , T ) denotes the number of
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rounds. The central server updates the global parameter θG
based on all clients’ local parameter updates as

θ
(t+1)
G =

N∑
i=1

|Di|
|D|

θ
(t+1)
i , (2)

where |Di| is the number of data points for client i, and |D|
is the total number of data points.

2) Representation Learning: The model parameters are
divided into two components θi = (θi,b, θi,h). Here, θi,b
represents the base parameter shared among all clients and
θi,h represents the head parameter of the i-th client. The model
parameters from Eq. (1) is modified as follows:

θ
(t+1)
i = θ

(t)
i − η∇θiL(Di, θ

(t)
i,b , θ

(0)
i,h). (3)

During learning, the gradient of the head parameter is
stopped, and a global model is learned using only the base
as

θ
(t+1)
G =

N∑
i=1

|Di|
|D|

θ
(t+1)
i,b . (4)

IV. PROPOSED ALGORITHM

Given a set of client’s accuracy ai ∈ a1, a2, . . . , aN , the
average of each client’s accuracy ā is computed as

ā =
1

N

N∑
i=1

ai. (5)

The standard deviation σ of each client’s accuracy is calcu-
lated as

σ =

√√√√ 1

N

N∑
i=1

(ai − ā)2. (6)

We interpreted the deviation of the test accuracy of the client
as time series data by dividing it by window size. Given a
window size denoted as w, the average accuracy of each client
ā for the last w rounds, āw, is computed as

āw =
1

N × w

N∑
i=1

w∑
j=1

ai,j , (7)

where ai,j represents the accuracy of the ith client at the jth

round within the window. The standard deviation for the recent
window w rounds, σw, is given by

σw =

√√√√ 1

N × w

N∑
i=1

w∑
j=1

(ai,j − āw)2. (8)

The optimal fine tune round R is determined as follows:
Observe the rounds where σw converges to a value σ∗

w.
Identify the round R ≤ T such that

σ′
w(R) < 0 and |σ′′

w(R)| ≈ ϵ, (9)

where ϵ is a small positive threshold. During the optimal fine-
tuning round R, fine-tuning occurs over F rounds, encompass-
ing both the base and head as

θ
(R+F )
i = θ

(R+F−1)
i − η∇θiL(Di, θ

(R+F−1)
i,b , θ

(R+F−1)
i,h ).

(10)
The optimal round, denoted as R, is fewer than the total

global rounds T . At this optimal round R, fine-tuning is
performed using the base and head layers for as many rounds
as F .

Algorithm 1 Federated Learning with Base and Personal
Layer Fine-tuning

1: Input: Total global rounds T , Total clients N , participate
ratio r, Fine tuning rounds F , Learning rate η, window
size w, epsilon ϵ

2: Initialize: Base parameter θ(0)i,b and head parameter θ(0)i,h

3: for each round t = 1, 2, . . . , T do
4: select clients with participate ratio M = r ×N
5: for selected client i = 1, 2, . . . ,M do
6: θ

(t)
i = θ

(t−1)
i − η∇θiL(Di, θ

(t−1)
i,b , θ

(0)
i,h)

7: end for
8: θ

(t)
G =

∑N
i=1

|Di|
|D| θ

(t)
i

9: ā(t) = 1
N

∑N
i=1 a

(t)
i

10: Compute standard deviation for all clients during re-
cent window rounds

11: σ
(t)
w =

√
1
N

∑N
i=1(a

(t)
i − ā

(t)
w )2

12: if σ′
w(t) < 0 and |σ′′

w(t)| ≈ ϵ then
13: break
14: end if
15: end for
16: for in R round, fine tune round f = 1 to F do
17: for For all clients i = 1, 2, . . . , N do
18: Fine-tune with base and personal layers:
19: θ

(R+f)
i = θ

(R+f−1)
i

− η∇θiL(Di, θ
(R+f−1)
i,b , θ

(R+f−1)
i,h )

20: end for
21: θ

(R+f)
i,G =

∑N
i=1

|Di|
|D| θ

(R+f)
i

22: end for

Algorithm 1 outlines the training procedure. Line 6 rep-
resents the local update, Line 8 indicates the global model
aggregation, and Lines 9–11 compute the standard deviation of
the clients’ accuracy during the evaluation step. The training is
terminated at round R which satisfies the condition in Line 12.
Lastly, Lines 16–20 conduct fine-tuning using each client’s
head and base layers.

V. EXPERIMENTS

Experiments were conducted using the MNIST, CIFAR-
10, and CIFAR-100 datasets but mainly foucsed on CIFAR-
100. For the baseline, we employed FedAvg [2], FedPer [8],
LG-FedAvg [9], FedRep [10], FedROD [11], and FedBABU
[12]. We utilized a shallow CNN model consisting of two
convolutional layers and two fully connected layers, which is
simpler than the baseline models. To generate Non-IID data,
we sampled each client’s data using a Dirichlet distribution and
set the Dirichlet parameter α = 0.1 to ensure a highly skewed
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distribution. For ease of visualization of the client’s data
distribution, we displayed the results from sampling 20 clients
from the CIFAR-10 dataset using the Dirichlet distribution
(α = 0.1) in Fig. 1.

Fig. 1. This illustrates the distribution of the CIFAR-10 dataset for 20 clients
generated randomly from a Dirichlet distribution (α = 0.1). Both the class
and data distribution are notably heterogeneous.

Fig. 2. Baseline Accuracies in MNIST. While the data heterogeneity was
sufficient, due to the nature of the data, a lack of class heterogeneity was
observed. This led to a convergence of all baseline accuracies to approximately
100% even before personalization.

For MNIST, CIFAR-10, and CIFAR-100, the total number
of clients N was set to 100. We used a batch size of 10, a
learning rate of 0.005, and a client join ratio of 0.1, ensuring
that k = 10 clients participated in each round. The total global
rounds T were set to 300 for MNIST and CIFAR-10, while
it was set to 1000 for CIFAR-100. In the MNIST (Fig. 2)
and CIFAR-10 (Fig. 3) results, all personalized Federated
Learning algorithms performed relatively well. Thus, due to
the significant accuracy difference in the CIFAR-100 (Fig. 4),
we focus primarily on experiments with CIFAR-100 dataset.

In Fig. 4, given the highly heterogeneous dataset, the
accuracy of FedBABU, which did not employ a head, was

Fig. 3. Baseline Accuracies in CIFAR-10. In the case of the CIFAR-10
dataset, although data heterogeneity was sufficient, the similarity in class
characteristics resulted in similar accuracies across all baselines, except for
FedAvg.

Fig. 4. Baseline Accuracies in CIFAR-100. The CIFAR-100 dataset’s diverse
data and class heterogeneity led to varied accuracies post-personalization.
FedROD [11] improved accuracy with a new loss function for class hetero-
geneity. FedBABU [12] used only the base layer for updates in heterogeneous
environments, excluding the head layer to reduce noise.

observed to be the highest. However, existing studies also
empirically used a fixed round, the optimality of which as
the learning termination point remains uncertain.

Fig. 5. In the CIFAR-100 dataset, as the accuracy of FedBABU is observed,
the accuracy begins to decline after a certain number of rounds.

As observed in Fig. 5, the accuracy tends to increase with
training progress but eventually decreases. This underscores
the importance of identifying the optimal fine-tuning point.
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Fig. 6. Deviation Trend in CIFAR-100. To determine an appropriate termina-
tion point, upon examining the trend, we found that the point where σ′ > 0
and σ′′ ≈ ϵ corresponds to a global round between 1000 and 1500.

Fig. 6 illustrates the standard deviation of test accuracy in
the CIFAR-100 dataset. The deviation (σ) first increases (σ′ >
0), then decreases (σ′ < 0), and subsequently stabilizes with
minimal fluctuations (|σ′′| ≈ ϵ). Based on this observation,
we used the condition in Eq. (9) to determine the optimal
fine-tuning round.

TABLE II
COMPARISON OF ACCURACY

MNIST CIFAR-10 CIFAR-100
Acc. (%) T Acc. (%) T Acc. (%) T

FedAvg [2]
91.48 100 36.87 100 29.04 500
96.32 200 42.00 200 30.95 1000
97.48 300 49.36 300 30.34 1500

FedPer [8]
98.30 100 86.16 100 40.22 500
98.63 200 87.34 200 41.03 1000
98.69 300 86.66 300 40.05 1500

LG-FedAvg [9]
97.95 100 85.75 100 41.06 500
98.17 200 86.10 200 41.01 1000
98.13 300 85.91 300 40.80 1500

FedRep [10]
98.56 100 86.58 100 40.44 500
98.69 200 88.12 200 41.24 1000
98.75 300 88.11 300 40.66 1000

FedROD [11]
98.61 100 86.24 100 49.50 500
98.95 200 88.01 200 48.70 1000
99.06 300 88.59 300 50.56 1500

FedBABU [12]
98.19 100 85.77 100 49.28 500
98.77 200 86.16 200 52.75 1000
98.84 300 87.07 300 51.82 1500

Ours 98.49(±0.11) 135(±16) 86.82(±0.16) 219(±18) 53.60(±0.36) 1121(±81)

VI. CONCLUSION

In this study, we propose a technique that tracks standard
deviation in representation learning, a method of personalized
federated learning designed to address data heterogeneity, to
find the optimal fine-tuning point. We empirically determined
that excessive training of the base layer results in decreased
accuracy after fine-tuning. Noting that the minimal changes in
accuracy and loss during the base layer’s training can obscure
the optimal fine-tuning point, we suggest identifying the fine-
tuning point by using the standard deviation of client accuracy.
Moreover, we allocated highly heterogeneous data to each
client and visually illustrated the sharp changes in accuracy
after fine-tuning, which was not addressed in prior research.

VII. FUTURE WORK

In the current paper, the focus has been on data het-
erogeneity. However, based on the experimental results, it

can be observed that in datasets with a limited number of
classes, there is only a marginal difference in accuracy after
personalization. Therefore, it appears crucial to consider both
data and class heterogeneity in future work. This paper has
utilized widely used image classification datasets such as
MNIST, CIFAR-10, and CIFAR-100, where datasets with only
10 classes exhibit minimal class heterogeneity and limited
accuracy variation post-personalization. As a result, in future
research, we plan to compare datasets with more than 100
classes, including CIFAR-100, Imagenet, and Tiny-Imagenet,
to account for the diversity of classes.
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