
Accelerating Convolutional Neural Network
Inference in Split Computing: An In-Network

Computing Approach
Hochan Lee

Korea University
Seoul, Korea

ghcks1000@korea.ac.kr

Haneul Ko
Kyung Hee University

Yongin, Korea
heko@khu.ac.kr

Chanbin Bae
Korea University
Seoul, Korea

bin6050@korea.ac.kr

Sangheon Pack
Korea University
Seoul, Korea

shpack@korea.ac.kr

Abstract—Since the latest deep neural network (DNN) models
are complex and have many layers, processing an entire DNN
model on mobile devices is challenging. To cope with this
challenge, a split computing (SC) approach has been proposed,
which divides a DNN model into multiple layers and distributes
them to mobile devices and edge servers. On the other hand, in-
network computing (INC) is a promising technology that offloads
computational tasks to network devices (e.g., programmable
switches) and thus provides low latency and line-rate packet
processing. Although the switch cannot directly process complex
DNN models due to its limited computing and memory resources,
it has the potential to process specific layers that require simple
arithmetic operations. For example, processing the max-pooling
layer of convolutional neural network (CNN) models can be
offloaded to the switch. In this paper, we consider a network
where there are three types of computing nodes: mobile device,
edge servers, and switches, and formulate the problem of placing
the layers of the CNN model on the computing nodes to minimize
the inference latency considering the resource constraints of com-
puting nodes. Then, we derive the optimal results by solving the
formulated optimization problem. Evaluation results demonstrate
that the optimal results show lower inference latency than a
random layer placement scheme and a server-only placement
scheme.

Index Terms—Split computing, In-network computing

I. INTRODUCTION

Recent advancements in deep learning (DL) applications,
such as computer vision [1], [2] and natural language process-
ing [3], have shown outstanding performance improvements.
These improvements have been achievable due to the develop-
ment of high-performance hardwares (e.g., GPUs and TPUs),
which enables the training of larger and deeper deep neural
network (DNN) models. However, deploying these models on
mobile devices has become challenging due to the limited
computing and memory resources of mobile devices.

To address this challenge, split computing (SC) [5] has
gained significant attention. It divides large DNN models into
multiple segments (e.g., head and tail models) and distributes
processing tasks across mobile devices and edge servers [4].
In this approach, mobile devices are responsible for process-
ing only a portion of the model for forward propagation,
transmitting intermediate results to the edge servers. The final
inference results are generated at the edge server by taking the

Fig. 1: System model.

intermediate results as input to the rest of the model. SC signif-
icantly reduces communication overhead, since mobile devices
only need to transmit intermediate data rather than all input
data. Furthermore, the processing at the edge servers offers
lower latency performance compared to traditional methods
based on cloud computing.

In-network computing (INC) technology has also attracted
attention in recent years. INC is a technology that offloads
computational tasks that were traditionally performed at end
hosts to network devices, such as programmable switches [6].
Using INC, it is possible to decrease latency by executing
computations on the programmable switches in the forwarding
path rather than on remote servers. In addition, INC takes
advantage of the high-performance processing speed of pro-
grammable switches, enabling packet processing at line-rate
speeds.

Unfortunately, because of the limited computing and mem-
ory resources of programmable switches, it is still difficult to
directly process a large DNN model on the switch. However,
it is possible to offload the processing of some specific layers
of the DNN model to the switch. For example, convolutional
neural network (CNN) models, which are widely used in
the image processing field, have several max-pooling layers
that are used for feature extraction and spatial reduction.

776979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

Since these max-pooling layers require only simple arithmetic
operations such as the max function, programmable switches
can process the max-pooling layer. Because the processing
speed of switches is hundreds to thousands of times faster
than that of servers, using INC in SC can lead to a significant
reduction in the inference latency.

In the SC environment where mobile devices, switches,
and edge servers are mixed as computing nodes, how to
place CNN layers on computing nodes considering resource
constraints should be addressed to minimize the CNN in-
ference latency. Although programmable switches have high
processing speeds, they have limited memory and thus can
handle only one max-pooling layer. Therefore, it is crucial to
consider such different memory and computing constraints of
computing nodes during a CNN layer placement.

In this paper, we consider a network where three types
of computing nodes (i.e., a mobile device, edge servers, and
switches) can process parts of CNN layers, and then formulate
the CNN layer placement problem which aims to minimize
the CNN inference latency experienced by the mobile device
considering resource constraints of computing nodes. After
that, we derive the optimal results by solving the formulated
optimization problem. From the evaluation results, it can be
demonstrated that the optimal results show lower inference
latency than a random layer placement scheme and a server-
only placement scheme.

II. SYSTEM MODEL

Figure 1 shows the system model of this paper, which con-
sists of a central controller and computing nodes. Computing
nodes include a mobile device, edge servers, and switches. In
the system model, the mobile device sends a request to the
controller for CNN inference to utilize the inference results
in their applications. To perform CNN inference requested by
the mobile device on the network, the controller adopts the SC
approach. The controller splits a CNN model into multiple
layers and places each layer on several computing nodes to
minimize the inference latency.

A network topology is defined as an undirected graph G =
(N,E), where N is a set of computing nodes denoted by N =
{n1, n2, ..., nN} and E is a set of links between nodes denoted
by E = {e1, e2, ..., eE}. We consider three types of computing
nodes: a mobile device, an edge server, and a switch. The
mobile device and edge servers can process all CNN layers,
while switches can process only one of the max-pooling layers.

Each computing node n ∈ N has two types of resource
capacity: computing and memory capacity. The computing
capacity and the memory capacity of the computing node n
are described as ccomn and cmem

n , respectively. On the other
hand, each link e ∈ E has a fixed amount of bandwidth be.
We assume that the controller knows a global network view
and can calculate the link bandwidth between any nodes in
the network.

The set of CNN layers is denoted by L = {l1, l2, ..., lL}.
Layer l ∈ L can be a convolutional layer, a max-pooling layer,
or a fully-connected layer. A binary variable Ml indicates

TABLE I: Summary of notations.

Notation Description

N Set of computing nodes
L Set of DNN layers
E Set of links
ccomn The computing capacity of the computing node n

cmem
n The memory capacity of the computing node n

rmem
l The memory capacity required to store the CNN layer l
rcoml The computing capacity required to process the CNN layer l
ol The output data size of the CNN layer l
be The bandwidth of the link e

bn,n′ The minimum link bandwidth between computing nodes n
and n′

hn,n′ The minimum number of hops between the computing nodes
n and n′

d The CNN inference latency
dl The total propagation latency
dp The total processing latency
Xn,l Equal to 1, if the computing node n has the CNN layer l
Ml Equal to 1, if the CNN layer l is the max-pooling layer
Sn Equal to 1, if the computing node n is the switch

whether the layer l is a max-pooling layer or not. Each
layer has different requirements for memory and computing
capacity. The memory capacity required to store the layer l
is denoted by rmem

l and the computing capacity required to
process the layer l is denoted by rcoml . In addition, they yield
different sizes of output depending on the layer architecture.
The size of the output results produced by the layer l is denoted
by ol. A binary variable Xn,l indicates whether the layer l is
placed on the computing node n or not.

III. PROBLEM FORMULATION

In this section, we formulate the CNN layer placement
problem to minimize the inference latency in the system
model. To this end, we first present the objective function
of the problem. After that, we explain several constraints
that should be considered in the problem. We summarize the
notations used in this paper in Table I.

A. Objective Function

Our goal is to minimize CNN inference latency experienced
by a mobile device. The CNN inference latency is denoted by
d and calculated by

d = dt + dp, (1)

where dt and dp refer to the total transmission latency and the
total processing latency, respectively.

The total transmission latency dt is defined as the sum of
the time it takes for all computing nodes to transmit the output
data to the next computing node and is calculated by

dt =
∑
n∈N

∑
n′∈N

∑
l∈L

olhn,n′Xn,lXn′,l+1

bn,n′
, (2)

where bn,n′ is the minimum bandwidth among links between
the computing nodes n and n′, and hn,n′ is the minimum
number of hops between the computing nodes n and n′.

777

The total processing latency dp is defined as the sum of
time it takes for all nodes to process the assigned CNN layers
and is calculated by

dp =
∑
n∈N

∑
l∈L

rcoml Xn,l

ccomn

, (3)

where ccomn is the computing capacity of the computing node
n. Therefore, the objective function can be expressed as

min
Xn,l

d (4)

s.t.(6)− (9). (5)

B. Constraints

The layer l should be placed on only one computing node.
Therefore, we have

∑
n∈N

Xn,l = 1. (6)

For the switches, they cannot process convolutional or fully
connected layers, but can only process one max-pooling layer.
On the other hand, the mobile device and the edge servers
can process any type of layer and can accommodate multiple
layers. This constraint can be described as

∑
l∈L

SnMlXn,l + (1− Sn) ≤ 1. (7)

Since each computing node has a fixed memory capacity,
the sum of the memory capacities required to store the CNN
layers deployed on the computing node n should not exceed
cmem
n . Thus, we have the following constraint as

∑
l∈L

rmem
l Xn,l ≤ cmem

n . (8)

Similarly, each computing node has a fixed computing
capacity, and the maximum value of processing capacities
required to process the CNN layers deployed on the computing
node n should not be greater than ccomn . This constraint can
be expressed as

max
l∈L

(rcoml Xn,l) ≤ ccomn . (9)

IV. SIMULATION RESULTS

For performance evaluation, we configure a simple network
topology consisting of a mobile device, two edge servers, and
two switches as in Figure 2. Due to the large complexity of
calculating an optimal solution to the formulated problem,
we consider a simplified CNN model based on the layer
specification in AlexNet [9]1. The CNN model considered has
5 layers, and its specification is shown in Table II, and the
input data size is set to 5MB.

The default memory and computing capacity of the edge
servers are set to 700MB and 700MFLOPS, respectively.
Those of the mobile device are set to be values 10 times
smaller than the edge server, respectively. Lastly, the memory

1In future work, we will design an algorithm that can run in a polynomial
time to address a complex CNN model and network topology.

Fig. 2: Simulation topology.

TABLE II: Specification of the CNN model in the evaluation.

Layer Index l 1 2 3 4 5

Type Conv Max Conv Max FC
rcoml (FLOPS) 100M 50M 200M 50M 300M
rmem
l 1GB 0.25GB 5GB 0.25GB 0.5GB
ol 10MB 2.5MB 6MB 1.5MB 1MB

capacity of switches is set to the same value as the memory
capacity required to process a max-pooling layer. To configure
the computing capacity of switches, we measured the pro-
cessing latency of processing the 2x2 max-pooling layer in
a hardware programmable switch (i.e., Intel Tofino [8]). The
measured latency is in the hundreds of nanoseconds, which
is much smaller than the processing latency of edge servers,
which is typically in the tens to hundreds of milliseconds.
Therefore, we set the processing latency of the switches to be
negligible by setting the computing capacity of the switches to
a much higher value than that of the edge server. The default
link bandwidths between computing nodes are set to 5Gbps,
except for the wireless link, which is set to 500Mbps.

We calculate optimal results by solving the CNN layer
placement problem formulated with a brute-force algorithm
(called OPTIMAL), and we compare the optimal results with
the following schemes: 1) RANDOM adopts random place-
ment of CNN layers; 2) SERVER finds the best placement
strategy by using only edge servers as computing nodes
without the usage of switches; 3) CLOUD places entire
CNN model on a remote cloud, which has unlimited memory
capacity. We assumed that the remote cloud has 5GFLOPS
of computing capacity and the link bandwidth between the
mobile device and the cloud is set to 200Mbps.

A. Effect of the computing capacity of edge servers

Figure 3 shows the inference latency of all schemes de-
pending on the computing capacity of the edge servers. It can
be found that OPTIMAL shows the lowest inference latency
performance, except for the case where the computing capacity
is 300MFLOPS. This is because it is beneficial to process the
entire CNN model in the cloud with significant computing
capacity if the computing nodes have too little computing
capacity. On the other hand, SERVER uses only edge servers
to process CNN layers, and thus does not benefit from high-
speed processing switches, allowing switches to only transmit
intermediate results. Meanwhile, since RANDOM does not

778

Fig. 3: The effect of the computing capacity of edge servers.

Fig. 4: The effect of the link bandwidth between computing
nodes.

consider the order of layer processing, it can cause unnec-
essary transmission latency to process layers sequentially,
resulting in a larger inference latency than SERVER.

B. Effect of the link bandwidth between computing nodes

Figure 4 shows the effect of the link bandwidth between
computing nodes. It is observed that as the bandwidth in-
creases, there is a slight increase in the performance gap
between OPTIMAL and SERVER. This is because the trans-
mission latency required to reach the switches is decreased,
and thus, the benefit of low processing latency by the switches
increases. Similarly, it can be found that the performance
gap between RANDOM and SERVER decreases as bandwidth
increases, this is because RANDOM can also utilize switches
as computing nodes, unlike SERVER.

V. CONCLUSION

In this paper, we formulated a CNN layer placement prob-
lem to minimize inference latency in an SC environment where
there are three types of computing nodes: mobile device,
servers, and switches. Then, we solved the formulated problem
and derived the optimal results. Lastly, we compared its
latency performance with other heuristic schemes. However,
since the optimal solution has a large computation complexity,
a novel heuristic algorithm that shows near-optimal perfor-
mance but low computation complexity must be deployed in
practical environments. In our future work, we will design a
new algorithm that can run in a polynomial time considering
a topological relationship between computing nodes and will
evaluate the proposed algorithm in more practical environ-
ments, including hardware edge servers and programmable
switches.

ACKNOWLEDGMENTS

This work was supported by Institute for Information and
communications Technology Planning & Evaluation (IITP)
grant (IITP 2022-0-00531) and in part by National Research
Foundation (NRF) (No. 2020R1A2C3006786) funded by the
Korean government.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and GE. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. NIPS 2012, December
2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proc. IEEE CVPR 2016, June 2016.

[3] J. Devlin, M. Chang, K, Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Proc.
NAACL 2019, June 2019.

[4] J. Chen, Q. Qi, J. Wang, H. Sun, and J. Liao, “Accelerating DNN
Inference by Edge-Cloud Collaboration,” in Proc. IEEE IPCCC 2021,
October, 2021.

[5] Y. Matsubara, M. Levorato, and F. Restuccia, “Split Computing and
Early Exiting for Deep Learning Applications: Survey and Research
Challenges,” ACM Computing Surveys, vol. 55, no. 5, pp. 1-30, December
2022.

[6] R. Bifulco and G. Retvari, “A Survey on the Programmable Data Plane:
Abstractions, Architectures, and Open Problems,” in Proc. IEEE HPSR
2018, June 2018.

[7] P4 Language Consortium. [Online]. Available: https://p4.org/specs/
[8] Intel Tofino Series Programmable Ethernet Switch ASIC. [Online].

Available: https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-series/tofino.html

[9] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L.
Tang, “Neurosurgeon: Collaborative Intelligence Between the Cloud and
Mobile Edge,” in Proc. ASPLOS 2017, April 2017.

779

