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Abstract—Graphic Processing Units (GPUs) are gradually
becoming mainstream computing resource for efficient execution
of applications both on-premises and in the cloud. Currently
however, most HPC applications are unable to leverage the
large computing capabilities they provide leading to issues of
resource under-utilization. Various GPU sharing approaches have
been proposed which leverage either software or hardware level
mechanisms like MPS or MIG in NVIDIA GPUs. However,
combining both the software and hardware level technologies
in an effort to mitigate resource under-utilization issues is yet
to be fully explored. In this paper, we conduct a case study on
scheduling memory intensive and compute intensive applications
on an NVIDIA A30 GPU. We compare the performance when
using only hardware level sharing mechanisms and when using
both hardware and software level mechanisms. We observed that
by combining both mechanisms, we improved total execution
times by up to 14% for a single run whilst improving peak
bandwidth utilization by about 39% for SCAN application.

Index Terms—Spatial Sharing, Concurrency, Resource under-
utilization, MPS, MIG

I. INTRODUCTION

Cloud computing, the on-demand delivery of IT resources
over the Internet [1], has changed the way scientists, busi-
nesses and individuals deploy applications. Traditionally, on-
premises supercomputers were instrumental in deploying ap-
plications like HPC applications however, these were very
expensive and required highly skilled personnel to manage
them thus deterring many businesses from using computing
resources [2] [3]. With cloud environments like [4]–[7], how-
ever, more and more users now have access to computing
devices, databases and storage on-demand at a relatively low
cost based on the pay-as-you-go pricing model most of these
cloud providers use.

With the thousands of processor cores they provide, General
Purpose Graphics Processing Units (GPGPU) have become
one of the necessary computing resources adopted by cloud
service providers to meet user’s increasing demand for com-
puting resources. Cloud-based GPUs promise to offer higher
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computational capacity on-demand which would further lower
the costs of deploying applications and services.

In reality however, dedicated GPUs seem to be more expen-
sive as traditional GPU run-time environments allow for the
execution of only one application at a time. Cloud providers
are leveraging container orchestrators like Kubernetes [8] or
Nomad [9] to schedule containerized applications unto the
GPU, however, this requires complex configurations since the
container orchestrators do not support the GPU by default [10].
Additionally, GPUs cannot be shared across containers and
pods thus containers are granted access to an entire GPU or
to several GPUs [11]. Moreover, researchers [13]–[21] have
observed that most applications are unable to saturate the
GPU resources dedicated to them resulting in resource under-
utilization thus higher overall infrastructural costs.

On NVIDIA GPUs, maximizing concurrency through mech-
anisms like CUDA Streams [22] [23], Hyper-Q, Multi-Process
Service (MPS) [24] as well as Multi-Instance GPU (MIG) [25]
have been introduced to further improve utilization of GPU
resources. These however fall short in ensuring GPU saturation
since that is application dependent.

This paper seeks to investigate optimal application-aware
approaches to scheduling HPC applications on an NVIDIA
A30 GPU in a bid to maximize GPU resource utilization.
Through this research we

• investigate the utilization of different GPU resources
when HPC applications are deployed on heterogeneous
GPU resources

• investigate the configuration of MIG instances which best
suits the execution of HPC applications with different
resource demands

• maximize the resource utilization of GPU resources by
exploring the use of a combination of software and
hardware level spatial sharing mechanisms.

The rest of the paper is organized as follows: in Section 2,
we briefly discuss the motivation for this investigation, some
GPU sharing mechanisms and the issue of resource under-
utilization. In Section 3, we discuss some related works on
GPU resource sharing mechanisms and explain our proposed
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approach in Section 4. We evaluate our experiments in Section
5 and conclude the paper in Section 6.

II. BACKGROUND AND MOTIVATION

A. GPU Resource Sharing

CUDA’s programming model enables both temporal and
spatial sharing of GPU resources through technologies like
CUDA Streams [22] [23], Hyper-Q, Multi-Process Service
(MPS) [24] and Multi-Instance GPU (MIG) [25]. While
CUDA streams facilitates concurrency among processes within
a particular application through temporal sharing [33] of GPU
resources, MPS and MIG enable spatially share GPU resources
among concurrent applications.

Multi-Process Service(MPS) [24] allows spatial sharing of
GPU resources across applications based on each application’s
resource(e.g. SM, memory, etc) demands. The software-based
mechanism, allows users to specify the percentage of SMs
to be used by a particular process while other resources like
memory, memory bandwidth and caches are shared between
concurrent applications.

Multi-Instance GPU(MIG) [25] is a hardware level shar-
ing mechanism that partitions GPU resources into multiple
predefined and isolated GPU Instances (GIs) [26] with dedi-
cated compute cores(GPU SM slices), memory (GPU Memory
slices), L2 cache and memory bandwidths to enable concurrent
executions while providing isolation. MIG instances can be
created from a combination of the aforementioned partitioned
resources to the tune of the available resources. On the
NVIDIA A100 [25] for instance, there are 19 possible MIG
configurations into which the GPU can be partitioned statically
and by default, each MIG instance allows for the execution of
only one application at a time.

B. GPU Resource Under-utilization

Following research works [13]–[16] which investigated re-
source utilization of Deep Learning (DL) applications on
GPUs, we presented in a previous paper [27], our observations
of the utilization of SM and memory bandwidth resources
when HPC applications are executed in isolation on a whole
GPU and on differently-sized MIG instances (Figure 1 and
Figure 2).

Fig. 1. SMACT [27]

We [27] measured amongst other metrics, the the ratio of
cycles an SM has at least one warp active on a multipro-
cessor averaged over all SMs (SMACT) and the utilization

Fig. 2. DRAMA [27]

of the memory bandwidth (DRAMA) for 4 selected HPC
applications taken from CUDA samples [28], Rodinia [29]
and PolyBench [30] benchmarks using NVIDIA’s Data Center
GPU Manager (DCGM) [31]. We also compared the utilization
obtained using DCGM to the compute and memory throughput
(Figure 3) obtained using Nsight Compute [32].

Fig. 3. Compute and Memory Throughput for Applications Executed on
NVIDIA A30 GPU (Partially referenced from [27])

From Figure 1 we observed that, apart from LavaMD, the
reported SM Activity for the applications investigated were
relatively small (less than 10%) regardless of the size of MIG
instance on which they were deployed. This revealed that
the SM resources available to the applications were poorly
utilized throughout the execution cycle. The observation also
corresponded to the compute and memory throughput shown
in Figure 3.

We also observed that from Figure 2 and Figure 3, SCAN
used the device memory interface more actively than LavaMD,
BFS and GEMM since the operations in SCAN require contin-
uous reading and writing from the GPU memory and can thus
be considered a memory intensive application. However, this
was also insufficient to fully saturate the memory bandwidth
of the NVIDIA A30 GPU. From the aforementioned observa-
tions, we safely concluded that majority of HPC benchmark
applications under-utilize even the least-sized MIG instance.
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III. RELATED WORKS

Until now, research has focused on improving the resource
utilization of SMs either at the software level through tech-
nologies like CUDA Streams, Hyper-Q and MPS or using
hardware level technologies like MIG. GSLICE [16] for in-
stance, employs spatial sharing in GPUs with MPS. Dhakal
et al. observed that the performance of inference models
improved until a point of diminishing returns (kneepoint)
when the share of GPU resources allocated is continuously
increased. Resources are then partitioned according to the
knee-points of the co-located inference workloads to maximize
resource utilization.

Similarly, Choi et al. [33], propose a new abstraction for
GPUs called gpu-let, which can create multiple virtual GPUs
out of a single physical GPU with spatial partitioning. They
leveraged both temporal and spatial sharing mechanisms and
proposed a scheme to allocate GPU resources to jobs in
a manner that minimizes interference while maximizing the
resource utilization and meeting Service Level Objectives
(SLOs). The proposed solution however tackles the issue
of resource utilization only at the software level without
considering sharing at the hardware level.

Both of the aforementioned research works focus on DL
and ML applications and do not consider applications of
different characteristics from other domains. Porter et al. [34],
developed a workload manager that combines compiler-based
instrumentation with a run-time system that leverages MPS
for HPC benchmark applications from the Rodinia benchmark
suite. Their proposed framework, supports mixed jobs with
isolation requirements as well as jobs that can share a GPU
instance. From their experiments, relaxing isolation for some
jobs running on MIG-enabled devices can improve throughput,
job turnaround time, and memory utilization, without heavily
affecting kernel execution times.

Renowned schedulers like Slurm [35], treat NVIDIA Multi-
Instance GPU (MIG) instances as individual GPUs. According
to [34] however, because Slurm reserves a partition that
is able to hold the process’ maximum kernel size for the
entire process’ lifetime, there is GPU under-utilization in the
schedules generated by Slurm, as well as sub-optimality in
terms of a schedule’s objective function such as throughput or
the job turnaround time of a batch. Moreover, none of these
prior research works leverage both MPS and MIG technologies
during execution.

IV. MAXIMIZING RESOURCE UTILIZATION USING MPS IN
MIG INSTANCES

To maximize resource utilization on the GPU as well as
maximize the infrastructural costs of deploying applications
over cloud GPU resources, there is the need for a scheduling
framework that facilitates the sharing of the GPU at both
the software and hardware levels. Leveraging both hardware
and software level spatial sharing technologies promises to
further improve GPU utilization as shown in Figure 4 whilst
improving the overall performance of the GPU.

Fig. 4. Improvement in resource utilization and overall performance

MIG partitions a single GPU into multiple predefined and
isolated GPU Instances (GIs) [26] on which workloads can
be executed in parallel without the bottlenecks of error and
security related interference. However, the traditional MIG
spatial sharing mechanism allows for the deployment of only
one application at a time in an instance. Consequently, when
the resource utilization of an application deployed within an
MIG instance is low and that application has a low SM
occupancy (please refer to Figure 7 in previous work [27]),
this only leads to issues like resource fragmentation described
in [36]. When concurrently running applications with low SM
occupancy using MPS [24] however, the MPS server balances
workloads by over-lapping kernel and memcopy operations of
the different processes running on the GPU and eliminating
the overhead of context switching.

Leveraging both MPS and MIG spatial sharing technologies
during execution, enables all shared applications to

• saturate the whole GPU as they saturate each MIG
instance (Figure 4).

• improve the utilization of the GPU without compromising
the overall performance of all scheduled applications.

• mitigate the issue of resource fragmentation [36] by pro-
viding sufficient isolated resources to applications with
low resource use while freeing unused resources for use
by other applications. This is especially useful in large
clusters which require strong-scaling.

Li et al. [37] propose a technique that requires the use of
both MPS and MIG when spatially sharing GPU resources.
They first determine the amount of SM resources used when
applications share GPU resources using MPS and then using a
performance predictor, they estimate the optimal MIG partition
required for the execution of a mix of jobs. For their research,
the information obtained using MPS is only used to determine
the optimum partition of GPU resources. They do not explore
the use of both approaches during the actual execution of the
applications.

Our investigations on the other hand, goes beyond using
MPS to estimate the MIG partition to actually leveraging
both technologies during execution. We also evaluate HPC
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applications which have different characteristics.

V. EXPERIMENT AND EVALUATION

We conducted our investigations using two selected appli-
cations on the NVIDIA A30 GPU (Table I) briefly described
below:

SCAN [28] is a simple parallel algorithm based on the all-
prefix-sums operation and used in sorting, lexical analysis,
string comparison, polynomial evaluation, stream compaction,
building histograms and data structures (graphs, trees, etc.)
amidst others [38]. It is classified as a memory intensive
application (Figure 2 and Figure 3) in this study.

LavaMD [29], a molecular dynamics application that calcu-
lates the potential and relocation of particles within a large 3D
space is classified as a compute intensive application (Figure 2
and Figure 3) in this study.

TABLE I
EXPERIMENTAL SET-UP

GPU Device NVIDIA A30
Device Memory 24GB
GPU memory bandwidth 933 GB/s
CUDA version 12.0
Nvidia-smi/ GPU Drivers 525.60.13
DCGM version 3.1.3
Nsight Compute version 2022.04

On the NVIDIA A30 GPU, there are 3 possible GPU
Instances (GIs) which can be created (Table II) and which are
used in our experiments. We create the instances in advance
and do not take into account the time taken to create the
instances during our investigations.

TABLE II
RESOURCES FOR MIG INSTANCES ON THE A30 GPU

Profile name Compute
(GPC)

SM Memory
(GB)

L2 Cache
(MB)

MIG 4g.24gb 4 56 24 24
MIG 2g.12gb 2 28 12 12
MIG 1g.6gb 1 14 6 6

A. CASE STUDY: Scenarios for Co-Running HPC Applica-
tions in MIG Instances

For our evaluation, we conducted a case study for co-
running applications on the NVIDIA A30 GPU using MPS
in differently configured MIG instances. Figure 5 shows the
optimal execution configuration for co-running applications
with different minimum resource requirements. We recall that,
on the NVIDIA A30 GPU, there are five (5) possible MIG
configurations as shown in Figure 5. We considered 5 possible
cases where a user submitted a batch of 3 applications (2
SCAN and 1 LavaMD) to be executed concurrently on various
MIG instances on NVIDIA A30 GPU as shown and evaluated
these cases using both software and hardware level sharing
approaches.

Fig. 5. CASE STUDY: Possible Execution Scenarios Based on Available
Configurations on NVIDIA A30

From our previous research ( [27]), we profiled both SCAN
and LavaMD on different MIG instances and obtained infor-
mation on the minimum resource required to run both applica-
tions; less than MIG 1g.6gb and a minimum of MIG 2g.12gb
respectively. We thus performed our investigations, providing
these resource requirements as part of the user-submitted
Service Level Objectives (SLOs) in this study. We run the
submitted applications for each of the cases (MIG only: 1-5
and MIG + MPS: a-e) presented in Figure 5 and evaluated
our observations.

B. Evaluation: Optimum MIG Configuration

From Figure 5, we observed that, for a batch of jobs
containing two (2) applications of SCAN and one (1) ap-
plication of LavaMD as shown, not all MIG configurations
can allow for the execution of the jobs in a single run.
The configurations which can allow for the execution of all
three applications concurrently is the heterogeneous config-
uration of either Scenario 3 or Scenario 4 when only MIG
is used, and Scenarios a-d when MPS is used within the
MIG instances. Scenarios 1 and 2 require at least 2 runs
to ensure that all the applications are executed which could
translate into higher costs of provisioning an MIG instance
in cloud environments. Using MPS in MIG however enables
users to save on these costs through concurrent executions
within instances. Scenarios 5 and e however, would not allow
for the execution of LavaMD since the minimum resource
requirement for LavaMD (MIG 2g.12gb instance) cannot be
satisfied. This suggests that MPS in MIG would be more
efficient in heterogeneous resource environments.

C. Evaluation: Improvement in Execution time

Figure 6 shows the total execution times when the submitted
applications are run using each GPU sharing approach for the 5
cases in Figure 5. The naming convention Scenario 1 a, used
to make the graph more readable, shows the execution times
when run using only MIG on the left and when using both
MPS and MIG on the right for each entry. From Figure 6,
we observed with reference to Scenario 1 a that, by using
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Fig. 6. Total Execution Time of Applications

MPS in MIG instances, the total execution times can be
reduced by up to 14% when applications are concurrently run
in MIG instances using MPS. This is particularly important
in cases where the workloads are diverse in the demand
for resources. Allowing jobs with low resource demands to
run together with jobs high resource demands through MPS
would allow the MPS server to over-lap kernel and memcopy
operations thus reducing the total execution time. Also, by
using MPS in MIG as in Scenario a, all user submitted
applications are executed in a single run as opposed to three
runs in Scenario 1. Scenario 2 b shows that both applications
complete execution in about the same time since for Scenario
2 the second SCAN application is executed concurrently with
the execution of LavaMD after the first one is completed. From
our investigations the worst case scenarios involve running
LavaMD concurrently with other applications in different MIG
instances as shown (Figure 6). We attribute this to a contention
for CPU resources by each MIG instance.

D. Evaluation: Improvement in Resource Availability

Figure 7 shows the number of applications executed concur-
rently in a single run for each case as well as the total number
or MIG instances freed in each execution run for each of the
cases in Figure 5.

Fig. 7. Number of Concurrently Executed Applications with Corresponding
Number of Freed MIG Instances

As explained previously, Scenario 1 a for instance, shows
the execution times when run using only MIG on the left and
when using both MPS and MIG on the right. From Figure 7,
we observed with reference to Scenario 3 c and Scenario
4 d that, by using MPS in MIG instances, MIG instances can
be freed for use by other applications. Scenario 5 e shows
free MIG instances when both sharing mechanisms are used.
This however is because, with the given configuration, the
minimum resource requirement of LavaMD is not met and
thus cannot be executed on the GPU. This reveals for further
research, the need for application-aware scheduling policies
to minimize failed jobs in large clusters. It also highlights the
need to accurately configure the GPU to maximize the benefits
of using both MIG and MPS sharing mechanisms.

E. Evaluation: Improvement in resource utilization

Figure 8 shows the SM resource utilization of the appli-
cations executed for Scenarios 1 and a in Figure 5. From
Figure 8, we observed that SMACT a corresponding to
Scenario a, is higher especially during the initial stages of
the execution. This is because the SCAN applications begin
executions on the GPU before LavaMD application and thus
MPS is able to overlap kernel operations between the SCAN
applications during that period. LavaMD after completion of
the CPU related tasks then begins executions on the GPU with
a high resource use of 1. For Scenario 1 on the other hand,
the sequential executions of the applications is seen to result
in lower resource utilization (about 39% lower) especially
when SCAN applications are being executed on the GPU.
The utilization remains high at 1 for both scenarios during
the execution of LavaMD.

Fig. 8. Improvement in Resource Utilization using MPS in MIG instances

VI. CONCLUSION AND FUTURE WORKS

This study seeks to investigate the effect of leveraging both
software and hardware level GPU spatial sharing mechanisms
on performance and the freeing up of resources whilst im-
proving resource utilization. From our study, we observed that,
by combining both software and hardware level GPU-sharing
mechanisms, a user is able to improve overall performance, re-
duce the number of execution runs and free-up MIG instances
or GPU resources for use by other applications for most cases.
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In the future we intend to investigate various application-aware
scheduling policies using a larger mix of HPC applications.
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