
Malicious URL and Intrusion Detection using
Machine Learning

Amr Hamza, Farah Hammam, Medhat Abouzeid, Mohammad Arsalan Ahmed, Salam Dhou, Fadi Aloul
Department of Computer Science and Engineering

American University of Sharjah

Sharjah, UAE

Email: sdhou@aus.edu

Abstract—Cyberattacks are becoming increasingly sophisticated
and evolving danger to the Web users. Therefore, addressing the
growing threat of cyberattacks and providing automated solutions
became a necessity. The purpose of this paper is to use machine
learning (ML) techniques for malicious websites detection and
classification, and intrusion detection. Different ML algorithms
were applied, namely Decision Tree (DT), K-Nearest Neighbors
(KNN), Naive Bayes (NB) and Support Vector Machine (SVM).
Two datasets were utilized to train the ML models. The first dataset
contains two classes of websites: “malicious” and “benign”. The
second dataset has six classes of different network intrusion cyber-
attacks: “normal”, “blackhole”, “TCP-SYN”, “PortScan”,
“Diversion”, and “Overflow”. Experimental results demonstrated
that the ML algorithms were able to achieve high accuracy in
predicting website maliciousness and intrusion detection. Using the
first dataset, DT KNN, and SVM classifiers exhibited the best
performance for detecting malicious URLs with accuracies over
99%. Using the second dataset, the DT classifier proved most
suitable for intrusion detection, achieving an accuracy of 95%. This
paper suggests the integration of ML techniques into online
security systems to enhance their efficacy in detecting and
preventing cyber threats.

Keywords- malicious URLs, machine learning, system penetration,
intrusion detection

I. INTRODUCTION

The Web is a large platform that is used by billions of people
around the world. The Web has a wide range of criminal
enterprises such as spam-advertised commerce, propagating
malware and financial fraud via phishing [1]. One common
aspect between all these cybercriminal activities is that they all
have unsuspecting users visit their websites. These visits can be
triggered by email, Web search results, or links from other Web
pages but they all necessitate the user performing some action,
such as clicking to specify the desired Uniform Resource
Locator (URL). These malicious URLs could also lead to
intruders accessing information stored on the users’ devices
such as pictures, location, emails, etc.

The idea of this paper centrally revolves around the protection
of general users against malicious URLs, phishing attempts, and
other security concerns. Most antivirus services provide tools
that identify viruses, malware, and worms. However, they can
slow down the devices that they run on. Furthermore, relying on
a firewall system alone is not sufficient to prevent a network
from all types of network attacks [2]. The traditional approaches

for detecting malicious URLs often rely on signature-based
techniques, which can be easily bypassed by polymorphic URLs
[3]. Therefore, offering automated solutions using the emerging
machine learning (ML) techniques, can provide a great
improvement in malicious websites and intrusion detection.

The main contribution of this paper is to utilize the large
datasets available nowadays and leverage the powerful ML
techniques for URL maliciousness prediction and intrusion
detection. Multiple machine learning techniques are utilized in
this work including decision tree (DT), support vector machine
(SVM), k-nearest neighbors (KNN), and Naïve Bayes (NB)
classifiers. Various evaluation metrics are used to evaluate each
of these classifiers such as accuracy, precision, recall, and F1-
score. Moreover, the receiver operating characteristic (ROC),
area under the curve (AUC) and confusion matrix are used. Two
datasets were utilized, namely malicious URLs dataset and
intrusion detection dataset in order to identify different evolving
adversarial security concerns. The findings of this work help the
cybersecurity authorities predict malicious URLs, cyber dangers,
thereby improving the security of online settings for all users.

The rest of this paper is organized as follows. Section II
presents the related works. Section III explains the datasets and
methodology considered in this work. Section IV presents the
experimental results. Section V provides a discussion of the
results. Section VI concludes the paper.

II. RELATED WORK

There are numerous research papers that propose solutions
to solve several security-related concerns. Justin et al. [3]
explored lexical and host-based aspects of the linked URLs to
identify malicious Websites using online learning techniques.
Researchers found that online algorithms are especially useful
when the training data is too large to be effectively processed in
batch processing and when the distribution of parameters that
characterize dangerous URLs is dynamic. Their proposed online
algorithm achieved a classification accuracy of 99% using a
balanced dataset. Another research paper [4] suggested a three-
class classification system for websites into benign, phishing
and malware using a learning-based technique. Without
accessing the websites’ content, their technique solely evaluates
the URL itself which reduces the run-time latency and the
chance of exposing users to browser-based security flaws.

798979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

Because of using the ML approach, their system achieved 97.53%
accuracy in identifying dangerous websites which outperformed
blacklisting services in terms of generality and coverage.
Another method for identifying dangerous websites that
prioritizes privacy protection was done by Wu et al. [5]. They
employed structural partitioning and singular value
decomposition (SVD) to protect the private information.
Afterwards, an evaluation was conducted using SVM. Their
method was able to identify a significant number of rogue
websites by their URLs. Lakshmanarao et al. [6] proposed an
ML-based solution for detecting malicious websites using
different ML techniques, namely LR, KNN, DT and RF. In
addition, they made use of different feature extraction methods.
The researchers concluded that using the hashing vectorizer and
RF classifier achieved the highest accuracy of 97.5%. This
model was used in a mobile app for detecting malicious URLs.

For intrusion detection solutions, Wu et al. [7] utilized the
KDD intrusion detection dataset to evaluate several models,
namely J48, RT, Random Tree, Decision Table, Multilayer
Perceptron (MLP), NB and Bayes Network classifiers. The
Bayes network classifier had the greatest value for properly
identifying the regular packets. The RF classifier has the lowest
RMSE value, lowest false positive rate and the greatest accuracy
rate of 93.77%. Except for the false negative parameter, the RF
classifier offers adequate performance parameters.

Furthermore, Choi et al. [8], Vanhoenshoven et al. [9]
Kaddoura et al. [10] and Prieto et al. [11] adopted various novel
methodologies and perspectives in detecting and categorizing
malicious web links and websites, utilizing different ML
techniques and datasets. These works are the most similar to the
work proposed in this paper. Choi et al. [8] presented a method
that detects malicious URLs and identifies specific types of
threats they pose. In a similar work, Vanhoenshoven et al. [9]
delve into the use of ML techniques for detecting malicious
URLs. Further, Kaddoura et al. [10] explored the classification
of websites based on their malicious or benign nature. The study
specifically leverages network features in conjunction with
supervised ML algorithms, providing a distinct methodological
approach from the previous studies. Lastly, Prieto et al. [11]
proposed a knowledge-based approach to identify potentially
risky websites. While the details were not given, their work
signifies an interesting perspective that deviates from the typical
ML-centric methodology and integrates a knowledge-based
approach for risk detection. The papers discussed above are
closely related to the proposed work since they make use of a
similar approach and utilize datasets that contain features similar
to the ones used in this work. They were also able to acquire
high accuracies using ML models similar to ours. Table 1
summarizes the papers discussed above.

Table 1: Summary of Literature Review Studies

Reference Type of

Attack

Targeted

Dataset Used Classifier

Used
Accuracy

Choi et al. [8] attack
types and
malicious
URLs

Real life
dataset
collected by
the authors

SVM 93% for
attack types
and 98% for
malicious
URLs

Vanhoenshoven
et al. [9]

malicious
URLs

Public dataset
(2.4 million
URLs)

RF 97.69%

Kaddoura et
al. [10]

malicious
URLs and
network
features

Public dataset
(1,782 URLs)

SVM 96%

Prieto et al.
[11]

domains
with
malicious
content

Generated
dataset

LR 89%

III. METHODOLOGY

A. Datasets Description

In this paper, two publicly available datasets that relate to
detecting malicious URLs as well as intrusion detection were
utilized. The first dataset used is “Dataset of Malicious and
Benign Webpages” [12], which will be referred to as dataset A.
This dataset contains 10 features such as URL, URL length, IP
address, geographic location and others. The dataset consists of
1.52 million records that are split into a training set that contains
1.2 million records, and a testing set that contains 362k records.
Each record represents a webpage that is either labeled as benign
(good) or malicious (bad). The dataset is highly imbalanced with
98% of the data belong to the benign class and the rest (2%)
belong to the malicious class.

The second dataset used was “Network Intrusion Detection”
[13], which will be referred to as dataset B. This dataset contains
5000 records of features extracted from Network Port Statistics
to protect modern-day computer networks from cyber-attacks.
The dataset contains 31 features such as switch ID, Port Number
passed, Received Packets, Sent Bytes, Sent Packets, and others.
The dataset consists of six classes: 0 (Normal), 1 (Blackhole), 2
(TCP-SYN), 3 (PortScan), 4 (Diversion) and 5 (Overflow). Fig.
1 shows the percentage of records belonging to different the
classes in each of dataset A and dataset B.

(a) (b)

Fig. 1. Percentage of records of different classes in (a) dataset A, and (b)
dataset B

B. Data Preprocessing and Model Selection

Several data pre-processing techniques were applied to the
datasets before ML algorithms were used. For dataset A,
irrelevant features were dropped from the dataset such as ID,
URL, IP address and content. This results in a total of 8 features
used for classification. Moreover, the binary features were
encoded using ordinal encoding. Due to the fact that the dataset
is highly imbalanced, under-sampling was applied by taking a
random subset of 150K from the benign records while
considering all the 8063 malicious records present in the dataset.

799

For dataset B, dimensionality reduction was applied by
merging the ‘Packets Looked Up’ field with the ‘Packets
Matched’ field into a single new field named ‘Packets not
Found’. Additionally, the samples belonging to class 5 were
dropped because the class has very few samples (1% of the
dataset). Dimensionality reduction was also applied by dropping
irrelevant features from the dataset such as the Table_ID, and
Max_Size. Additionally, the features that had no variance in the
values for all samples were also dropped, such as the ‘is_valid’
field. This process results in a total of 26 features left to be used
for classification. Moreover, ordinal encoding and scaling were
applied to features such as ‘received packets’ and ‘bytes’, and
the ‘sent packets’ and ‘bytes’. For model selection, holdout
method were used where 20% of the dataset is used for testing
while the rest of the dataset is used for training.

C. Classification Algorithms Used

Decision Tree (DT) algorithm: creates a tree-like model by
learning basic decision rules from training data [10]. The root of
the decision tree represents the entire dataset and each internal
node represents a decision rule based on one of the input features.
The branches represent the possible values of the feature, and
the leaf nodes represent the predicted value of the target variable.
To make a prediction for a new data point, the input features of
the testing dataset are compared against the decision rules
represented by the internal nodes of the tree, and the predicted
value is obtained by following the appropriate branch to a leaf
node. The metrics that decision trees rely on to determine the
best feature to split the dataset based on at each internal node are
impurity measures such as Entropy or Gini Index, defined as
follows:

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 1 − ∑ (𝑝𝑝𝑖𝑖)2𝑐𝑐
𝑖𝑖=1 (1)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑆𝑆) = ∑ −𝑝𝑝𝑖𝑖 log2 𝑝𝑝𝑖𝑖
𝑐𝑐
𝑖𝑖=1 (2)

where 𝑝𝑝𝑖𝑖 is the relative frequency of class i at a specific node.

K-nearest neighbors (KNN): a supervised non-parametric ML
algorithm. It assigns a class label to an instance based on the
class labels of its K nearest neighbors in the training data. Using
a distance metric (e.g., Euclidean distance, Manhattan distance),
the algorithm determines the distance between the instance and
each training sample. The K closest neighbors are identified, and
the class title is selected by majority vote. The predictions are
affected by the choice of K. In addition, the KNN classifier
avoids the time-consuming training process, and, more
importantly, bypasses the need to learn individual program
profiles separately [17]. Thus, the cost of learning program
behavior is significantly decreased. Euclidean distance is
defined by equation (3).

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = √∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 (3)

where x and y are samples being compared, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 represent

feature i of each of the samples x and y, respectively, and n is
the number of features describing each sample.

Naive Bayes (NB): an algorithm based on Bayes theorem,
which predicts the label of a data point based on the probability

of a hypothesis (or label) given some observed evidence (or
features). The algorithm classifies the new data point by
calculating the posterior probability of each class given the
observed evidence and assigning that point to the class with the
highest probability. The mathematical formula (4) calculates the
probability of a sample to belong to a specific class given a
feature vector, where y represents the class label and X
represents the feature values.

𝑃𝑃(𝑦𝑦|𝑋𝑋) = 𝑃𝑃(𝑋𝑋|𝑦𝑦)𝑃𝑃(𝑦𝑦)
𝑃𝑃(𝑋𝑋) (4)

The NB algorithm assumes conditional independence among
features. Furthermore, it can work with missing feature values.

Support Vector Machines (SVM): A powerful and widely
used supervised ML algorithm. Its goal is to find a hyperplane
in an N-dimensional space to separate the data points belonging
to different classes [10]. The hyperplane is selected in such a
way that the data points are separated into distinct regions, one
for each class, and the margin between the regions is maximized.
SVM can still work even if the data is not linearly separable by
using the kernel trick to map the data into a higher-dimensional
space where it becomes separable by a hyperplane. This allows
the SVM algorithm to handle complex and nonlinear
relationships between the features and the target variable.

All four classifiers mentioned above are applied to each of
dataset A and dataset B, and their results are compared.

D. Evaluation Metrics

Several evaluation metrics are used to assess the
performance of each of the ML models in classifying the target
variable. In this work, accuracy, precision, recall, F1-score,
receiver operating characteristic (ROC), area under the curve
(AUC) and confusion matrix are used.

Accuracy is the simplest and commonly used metric for
classification tasks. It is defined as the ratio of correct
predictions to the total number of predictions as defined in
formula (4):

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹 (4)

where 𝑇𝑇𝑇𝑇 is the number of true positives, 𝑇𝑇𝑇𝑇 is the number of
true negatives, 𝐹𝐹𝐹𝐹 is the number of false positives and 𝐹𝐹𝐹𝐹 is the
number of false negatives.

However, accuracy may not be the best metric to use
especially when dealing with imbalanced datasets. Precision and
recall are two metrics that are commonly used for classification
tasks and they work well in the case of imbalanced datasets.
Precision and recall formulas are provided as follows:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (5)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (6)

F1-score is a harmonic mean of precision and recall. It is a
good metric to use when dealing with imbalanced datasets. It is
defined as follows:

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2⋅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⋅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (7)

800

The ROC is a graphical representation of the trade-off
between the true positive rate and false positive rate for different
classification thresholds [16]. The AUC can be calculated as the
area under the ROC curve. The AUC is a popular metric for
evaluating binary classification models. It measures the
performance of the model across all possible thresholds, which
can be useful when dealing with imbalanced datasets.

Lastly, a confusion matrix is a table that summarizes the
performance of a classification model. It contains four values:
true positives, false positives, true negatives, and false negatives
[16]. The values in the confusion matrix can be used to calculate
various metrics, including accuracy, precision and recall as
mentioned in equations (4) – (6).

IV. EXPERIMENTAL RESULTS

A. Results using Dataset A

Different ML algorithms were applied to dataset A. The
following subsections show the results of each of the ML models.

- DECISION TREE (DT)

DT algorithm was applied on dataset A. Several tests were
run to find the optimal tree size that results in the highest
prediction accuracy. The size of the optimal tree was 19 nodes
and it resulted in an accuracy of 99%. This classifier achieved a
recall value of 99% and a precision value of 96% for the
‘malicious’ class. The classifier also achieved an F1-score of
98%. The AUC score obtained was 0.99.

Fig. 2 shows the confusion matrix resulting from applying
the DT classifier on dataset A. As can be seen from the figure,
most of the samples were correctly classified.

Tr
ue

 la
be

l Benign 1624 14

Malicious 63 3e+04

 Benign Malicious
 Predicted label

Fig. 2. Confusion matrix resulting from applying DT classifier on dataset A

- K-NEAREST NEIGHBORS (KNN)

One of the important factors in prediction accuracy for KNN
is the number of neighbors used. It was found that the number
of nearest neighbors for dataset A that yielded the highest
accuracy (99.88%) was 100 neighbors. The precision of the
malicious class is 100%. However, the recall was about 95% and
the F-score was 97%. The AUC of the ROC curve was 99.86%.

Fig. 3 shows the confusion matrix resulting from applying
the KNN classifier on dataset A. As can be seen from the figure,
most of the samples were correctly classified.

- NAÏVE BAYES (NB)

Using the NB model, an accuracy of 99.75% was obtained.
The precision of the malicious class was 100% while the recall
was approximately 89%. The F1-score was 94%, which was
lower than that of the decision tree and KNN models. The AUC
of the ROC curve was 99.69%.

Tr
ue

 la
be

l Benign 1538 84

Malicious 0 70765

 Benign Malicious
 Predicted label

Fig. 3. Confusion matrix resulting from applying KNN classifier on dataset A

- SVM WITH LINEAR KERNEL

An SVM with linear kernel model was utilized in this work.
Several tests were run to select the best hyperparameters for the
model. The best accuracy obtained was 99.73% at iteration 5000.
The precision of the malicious class was 100%. The recall, on
the other hand, was 89% similar to that achieved using the NB
model. The achieved F1-score was 94%. This demonstrates that
the linear SVM model and the NB model are both less
accurate models compared to KNN and DT classifiers.

- SVM WITH POLYNOMIAL KERNEL

An SVM with polynomial kernel model was utilized in this
work. Several tests were run to select the best hyperparameters
for the model. The polynomial degree selected was 6 which
achieved an accuracy of 99.75%. Fig. 4 shows the confusion
matrix resulting from applying the SVM with polynomial kernel
classifier on dataset A. As can be seen from the figure, most of
the samples were correctly classified.

Tr
ue

 la
be

l Benign 1529 87

Malicious 0 70771

 Benign Malicious
 Predicted label

Fig. 4. Confusion matrix resulting from applying the SVM classifier with
polynomial kernel on dataset A

The precision of the malicious class was 100% while the
recall was 95%. The combination of the two measures yielded
an F1-score of 97%. The results of all the ML models applied to
dataset A are summarized in Table 2.

Table 2. Applicability metrics of all ML models applied to dataset A

Class Metric DT KNN NB

Linear

Kernel

SVM

Poly

Kernel

SVM

Malicious

Precision 96% 100% 100% 100% 100%

Recall 99% 95% 89% 89% 95%

F1-score 98% 97% 94% 94% 97%

Benign

Precision 100% 100% 100% 100% 100%

Recall 100% 100% 100% 100% 100%

F1-score 100% 100% 100% 100% 100%

Overall Accuracy 99.76% 99.88% 99.75% 99.73% 99.75%

 AUC 99.98% 99.86% 99.69% 99% 99%

801

B. Results using Dataset B

Different ML algorithms were applied to dataset B. The
following subsections show the results of each of the ML models.

- DECISION TREE (DT)

Several tests were run to select the ideal size of the DT that
results in the maximum prediction accuracy. The testing
accuracy was at its highest (95%) when the tree had 49 nodes.
Fig. 6 shows the confusion matrix resulting from applying DT
on dataset B. As can be seen from the figure, both the TCP_SYN
(class 2) and Port Scan (class 3) attacks have remarkably similar
features which resulted in false negatives and false positives
between these classes in the confusion matrix.

Fig. 6. Confusion matrix resulting from applying the DT classifier on dataset B

The DT classifier had precision values ranging between 79%
and 100% for the different classes as seen in Table 3. The recall
and F1-score values ranged between 78% and 100%.

- KNN

KNN was applied on dataset B. Several tests were run to find
the number of neighbors that maximizes the accuracy. It was
found that 13 neighbors is the best number of nearest neighbors.
The accuracy of the KNN model was comparatively lower than
that of the DT classifier, which was around 85.19% as can be
seen in Table 3. The KNN classifier was mainly not able to
differentiate between the TCP_SYN and Port scan classes, as
well as misclassifying a hefty 39 samples from the Diversion
type class as a blackhole. The precision values ranged between
58% and 99 %, and recall values ranged between 42% and 100%.
The generated F1-scores ranged between 51% and 99%, as can
be seen in Table 3. Due to these scores, it can be concluded that
this classifier is not as accurate as the DT classifier.

- NAÏVE BAYES (NB)

NB classifier was applied to dataset B. As can be seen in
Table 3, the accuracy of NB was lower than that of the DT, but
similar to the KNN model, sitting at about 84.69%. This
classifier had difficulty distinguishing between several samples
in the TCP_SYN and Port scan classes too, as well as
misclassifying 38 samples from the blackhole type class as
Diversions. This model yielded F1-scores for its classes ranging

between 60% and 100%, and precision scores ranging between
52% and 100% and recall scores ranging between 48% and
100%, as shown in Table 3. It can be concluded that the scores
achieved by KNN classifier are not as high as the ones achieved
by the DT model.

- SVM WITH LINEAR AND POLYNOMIAL KERNELS

SVM models with linear and polynomial kernels were also
applied to dataset B. The results achieved were low compared to
other models. Even after performing hyperparameter tuning on
both models, the performance did not vary significantly.
Moreover, due to their poor performance in all metrics as can be
seen in Table 3, SVM models with linear and polynomial
kernels were considered unsuitable for dataset B.

Table 3. Applicability metrics of all ML models applied to dataset B

Class Metric DT KNN NB

SVM

Linear

SVM

Poly

Normal

Precision 100% 99% 100% 86% 58%

Recall 100% 100% 100% 91% 100%

F1-score 100% 99% 100% 89% 74%

Blackhole

Precision 97% 58% 78% 85% 30%

Recall 95% 72% 54% 28% 2%

F1-score 96% 64% 64% 42% 5%

TCP-

SYN

Precision 79% 73% 61% 47% 75%

Recall 83% 79% 96% 45% 13%

F1-score 81% 75% 75% 46% 22%

PortScan

Precision 79% 76% 99% 25% 25%

Recall 78% 70% 48% 28% 5%

F1-score 78% 73% 65% 27% 9%

Diversion

Precision 100% 67% 52% 44% 22%

Recall 96% 42% 72% 68% 3%

F1-score 98% 51% 60% 54% 5%

Overall Accuracy 95% 85% 85% 67% 57%

V. DISCUSSION

This work employed four ML methods, namely DT, NB,
SVM and KNN, to detect harmful websites and identify system
intrusions. As shown in Table 2, all ML algorithms
demonstrated excellent performance in detecting fraudulent
websites especially the KNN model applied on dataset A. This
suggests that these algorithms can be valuable in identifying and
preventing cyber threats, particularly in the context of website
and system security. Furthermore, the DT algorithm exhibited a
high F1-score of 98% when applied on dataset B, indicating its
proficiency in recognizing patterns and making accurate
predictions on new, unseen data. Furthermore, it can be
concluded that the preprocessing step including feature selection
and dimensionality reduction that were applied on each of the
datasets allowed the respective models to be able to perform
well in detecting malicious URLs and intrusion. Table 4
compares the proposed work to other works that use similar
datasets. As can be seen, the proposed work outperformed the
previous ones.

802

Table 4. Models’ Performance Comparison with previous works

Detected Attack

Categories

Dataset Used Classifier

Used

Results

Attack types and
bad URLs [8]

Real life dataset
collected by the
authors

SVM Accuracy: 93%
(Attack types), 98%
(Malicious URLs)

Malicious URLs
[9]

Public dataset
(2.4 million
URLs)

RF Accuracy: 97.69%

Malicious URLs
and network
features [10]

Public dataset
(1,782 URLs)

SVM Accuracy: 96%
F1-Score: 92%

Domains that
contain malicious
content [11]

Built a dataset LR Accuracy: 89%

Malicious URLs Dataset A KNN Accuracy: 99.88%
F1-Score: 97%

TCP_SYN and

Port scan

Dataset B Decision
Tree

Accuracy: 95.09%
F1-Score: 78% -
100%

VI. CONCLUSION

In summary, this paper revealed that using ML classification
techniques was highly effective in detecting malicious URLs,
achieving accuracies over 99%. For intrusion detection, the DT
classifier proved to be the most suitable with an accuracy of 95%.
These findings highlight the significant potential of ML
techniques in the field of cybersecurity. Implementing these
techniques can enhance website security and effectively defend
against harmful cyberattacks. The study underscores the need
for a diverse range of ML algorithms to improve the accuracy
and dependability of security systems. By leveraging the
strengths of different algorithms, comprehensive and robust
security solutions can be developed to combat evolving cyber
threats. In the future, the aim is to extend the work to consider
more types of security attacks. This can be done by training the
ML models on datasets that include other attacks. Moreover, the
proposed method can be implemented and used in different
security systems to provide real-time protection of general users
against malicious URLs and other security concerns.

REFERENCES

[1] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
Learning to detect malicious web sites from suspicious URLs,” Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1245–1253, 2009.

[2] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo, “Practical
real-time intrusion detection using machine learning approaches,”
Computer Communications, vol. 34, no. 18, pp. 2227–2235, 2011.

[3] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker.
2009. Identifying suspicious URLs: an application of large-scale online
learning. In Proceedings of the 26th Annual International Conference on
Machine Learning (ICML '09). Association for Computing
Machinery,NewYork,NY,USA,681–688.

[4] Haotian Liu, Xiang Pan and Zhengyang Qu, "Learning based Malicious
Web Sites Detection using Suspicious URLs", Proc. of the 34th
Internationai Conference on Software Engineering, 2009.

[5] M. Wu and M. Yang, “Privacy Preservation for Detecting Malicious Web
Sites from Suspicious URLs,” 2011, International Conference on Business
Computing and Global Informatization, Shanghai, China, 2011, pp. 400-
403, doi: 10.1109/BCGIn.2011.106.

[6] A. Lakshmanarao, M. R. Babu, and M. M. Bala Krishna, “Malicious URL
detection using NLP, machine learning and Flask,” 2021 International
Conference on Innovative Computing, Intelligent Communication and
Smart Electrical Systems (ICSES), 2021.

[7] M. Almseidin, M. Alzubi, S. Kovacs, and M. Alkasassbeh, “Evaluation of
machine learning algorithms for Intrusion Detection System,” 2017 IEEE
15th International Symposium on Intelligent Systems and Informatics
(SISY), 2017.

[8] H. Choi, B. Zhu, and H. Lee, "Detecting Malicious Web Links and
Identifying Their Attack Types," in Proceedings of the 2nd USENIX
Conference on Web Application Development (WebApps '11), Portland,
OR, USA, 2011, pp. 4-4.

[9] F. Vanhoenshoven, G. Napoles, R. Falcon, K. Vanhoof, and M. Koppen,
“Detecting malicious urls using machine learning techniques,” 2016 IEEE
Symposium Series on Computational Intelligence (SSCI), 2016.
doi :10.1109/SSCI.2016.7850079

[10] S. Kaddoura, "Classification of malicious and benign websites by network
features using supervised machine learning algorithms," 2021 5th Cyber
Security in Networking Conference (CSNet), Abu Dhabi, United Arab
Emirates, 2021, pp. 36-40, doi: 10.1109/CSNet52717.2021.9614273.

[11] J. C. Prieto, A. Fernandez-Isabel, I. M. De Diego, F. Ortega, and J. M.
Moguerza, “Knowledge-based approach to detect potentially risky
websites,” IEEE Access, vol. 9, pp. 11633–11643, 2021.

[12] A. K. Singh, “Dataset of malicious and benign webpages,” Kaggle, 04-
Apr-2020.[Online].Available:
https://www.kaggle.com/datasets/aksingh2411/dataset-of-malicious-and-
benign-
webpages?resource=download&select=Webpages_Classification_train_d
ata.csv. [Accessed: 07-Feb-2023].

[13] G. Dutt, "Network Intrusion Detection," 2020, Kaggle. [Online]. Available:
https://www.kaggle.com/datasets/gauravduttakiit/network-intrusion-
detection?resource=download. [Accessed: April 29, 2023].

[14] I. Ul Hassan, R. H. Ali, Z. Ul Abideen, T. A. Khan, and R. Kouatly,
“Significance of machine learning for detection of malicious websites on
an unbalanced dataset,” Digital, vol. 2, no. 4, pp. 501–519, 2022.

[15] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for
intrusion detection,” Computers & Security, vol. 21, no. 5, pp. 439–
448, 2002.

[16] S. Pradhan and S. K. Nayak, "An Analysis of SVM and NN Classifiers for
Large Scale Datasets," 2019 3rd International Conference on Trends in
Electronics and Informatics (ICOEI), 2019, pp. 475-480.

[17] G. S. Handelman, H. K. Kok, R. V. Chandra, A. H. Razavi, S. Huang, M.
Brooks, M. J. Lee, and H. Asadi, “Peering into the black box of artificial
intelligence: Evaluation metrics of machine learning methods,” American
Journal of Roentgenology, vol. 212, no. 1, pp. 38–43, 2019.

803

