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Abstract—In this paper, we introduce a federated learning
(FL) framework tailored for a satellite and terrestrial-integrated
network (STIN), which employs a semi-asynchronous FL algo-
rithm and in-orbit aggregations (IOA) to mitigate the straggler
issue and enhance energy efficiency. Our goal is to optimize
IOA-aware routing to enable energy-efficient model aggregation
with uncertain ground stations (GSs) in terms of upload-ready
timing. To this end, we utilize a time-expanded directed graph
(TEDG) to effectively account for the network’s connectivity
and energy demands. Furthermore, we propose a predictive
algorithm to cope with the uncertainty of GSs. A preliminary
result demonstrates the robustness of our approach even under
inaccurate predictions, achieving a marginal gap of 2% of the
cost compared to the optimal scheme.

Index Terms—satellite networks, federated learning, time-
expanded graph, algorithm with prediction

I. INTRODUCTION

Recently, the role of low Earth orbit (LEO) satellites has
gained attention in various scenarios such as 6G and the
Internet of Things (IoT) [1]. In particular, the wide coverage
and computing resources provided by LEO satellites have
spurred interest in research related to task offloading for
IoT in remote areas [2], [3], deployment and routing of
virtual network functions (VNFs) in satellite networks [4],
[5], and high-speed packet processing based on programmable
switches-deployed LEO satellites [6].

Meanwhile, machine learning (ML)-based data processing
and network management techniques have gained attention to
manage the complexity of large-scale networks integrated with
satellites. However, the approach of transferring vast amounts
of data to a central server, such as a cloud, for learning is
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fraught with constraints due to bandwidth limitations of the
communication link and intermittent connections caused by
high mobility. As a result, federated learning (FL) techniques,
which allow for the distributed training of models and the ex-
change of trained models instead of raw data, thereby reducing
the costs of satellite networks associated with transferring large
amounts of data, have gained significant attention. Chen et
al. [7] and Zhao et al. [8] have outlined the potential roles
that LEO satellites able to process on board can play in an
FL framework. These roles include serving as a relay node, a
learning agent, and a local and global parameter aggregator.

In contrast to the usual network environments, synchronous
FL procedures could worsen the straggler problem in large-
scale networks such as satellite networks. To tackle this issue,
Razmi et al. [10] proposed synchronous and asynchronous
FL algorithms for the satellite network where ISL can be
used and aggregation at intermediate satellites is feasible.
They also demonstrated the potential when PS is possible on
satellites. However, they did not actively consider inter-orbit
communication and the more complicated network routing
that arises from it. Wang et al. [11] introduced an FL-aware
routing and resource allocation scheme to minimize the delay
in transmitting the FL model to the parameter server (PS)
on the ground. However, they did not address the energy
consumption issue inherent in asynchronous FL algorithms.
Lin et al. [12] proposed a dynamic FL model aggregation
technique that considers periodic and buffer-based aggregation
methods, highlighting the potential of a semi-asynchronous
approach that can alleviate straggler and energy issues. Nev-
ertheless, they only considered model exchanges of satellites
through direct communication with GS without considering
inter-satellite links (ISLs).

In this paper, we explore a framework of FL tailored for
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a satellite and terrestrial-integrated network (STIN) adopting
a semi-asynchronous FL algorithm, which aggregates trained
models periodically. Within this framework, geo-distributed
GSs train and upload local models asynchronously. Con-
currently, LEO satellites operate as a backhaul network,
performing in-orbit aggregations (IOAs). These aggregations
encompass both global model aggregation and partial model
aggregation. The former is executed by a satellite operating as
a global model aggregator (GA) periodically, while the latter
is carried out by intermediate on-path satellites. Meanwhile,
the asynchrony of GSs presents a challenge for model upload
routing due to the uncertain timing of their readiness to upload
models.

To facilitate energy-efficient FL in the presence of this
uncertainty, we solve a problem optimizing IOA-empowered
routing for trained model upload by leveraging prediction.
To this end, we first construct a time-expanded directed
graph (TEDG) of the network over the time horizons for
each interval. In the constructed TEDG, we find a directed
rooted tree in which the vertex at the end of each interval,
representing the GA, is designated as the root, and it includes
vertices that signify the upload-ready GSs. Lastly, to address
the challenge originating from the uncertainty of the GSs, we
propose an algorithm that considers predictions on upload-
ready GSs identifying which vertices in the TEDG need to be
included in the tree.

Through a preliminary result, we demonstrate that our pro-
posed algorithm operates effectively even in situations where
the predictions are not accurate.

II. SYSTEM MODEL

Fig. 1 shows the STIN-based FL framework considered in
this paper consisting of a set of GSs G and a set of LEO
satellites L. The overall training process, in alignment with
the semi-asynchronous FL technique that follows periodical
aggregation, is divided into multiple intervals, with each
interval subdivided into T time slots. At the beginning of
each interval, a LEO satellite, which acts as a GA (i.e., PS),
transmits a global model to GSs (i.e., FL clients). Once the
GSs download the global model, they utilize their individual
datasets to update it. Upon completion of the update, these
GSs transition into an upload-ready state. It is worth noting
that the GSs are distributed across a broad area and possess
diverse computing capabilities. As a result, the timing of their
readiness for uploading, which is followed by the completion
of model updates, can vary. Some GSs may complete their
updates earlier, while others may not finish within a single
interval. Following this, GSs in the upload-ready state asyn-
chronously send their models to the GA. During this phase,
the ISLs of LEO satellites facilitate multi-hop transmissions,
and satellites overlapping in the transmission routes conduct
partial aggregations. Note that the partial aggregation not only
decentralizes the computational and energy demands from
the GA to on-path satellites but also consolidates multiple
incoming updated models into a singular-sized model. By the
end of the interval, the GA aggregates the received models

Fig. 1. System model.

and sends the newly aggregated global model back to the GSs
that uploaded. For the sake of simplicity, we assume that the
model upload and download processes operate independently
and mainly focus on the upload phase.

III. PROBLEM FORMULATION

In this section, we first construct a TEDG for the STIN
to capture the asynchronous behavior of upload-ready GSs
and energy consumption patterns of the network. Then, we
present a formulation for constructing a directed tree within
the TEDG.

A. Time-Expanded Directed Graph Construction

To effectively model the dynamics and energy-consuming
patterns of STIN, we construct a TEDG for the STIN. Each
interval of the semi-asynchronous FL procedure is defined by
durations T . The TEDG for every interval, denoted as G =
(V,A,M,N ), is constituted by sets of vertices V , arcs A,
vertex features M and arc features N .

Specifically, the vertex set V = VG ∪ VL is formed by
time-expanded vertices of GSs and LEO satellites from STIN,
which is replicated along the time horizon, represented by
VG = {vg,t|1 ≤ t ≤ T, g ∈ G} and VL = {vl,t|1 ≤ t ≤
T, l ∈ L}, respectively.

The arc set A = AG∪AGL∪AL∪ALL consists of storage
and transmission arcs linking vertices across consecutive slots.
The storage arcs of GSs AG = {(vg,t, vg,t+1)|1 ≤ t < T, g ∈
G} and LEO satellites AL = {(vl,t, vl,t+1)|1 ≤ t < T, l ∈ L}
both represent the connections between vertices in consecutive
time slots pointing to the identical GS and LEO, respectively,
which implies the utilization of their respective storage capa-
bilities. The transmission arcs for vertices of GSs and LEO
satellites AGL = {(vg,t, vl,t+1)|1 ≤ t < T, g ∈ G, l ∈ L} and
LEO satellites ALL = {(vl,t, vl′,t+1)|1 ≤ t < T, l, l′ ∈ L}
indicate the transmission from GSs to LEO satellites and
among LEO satellites, respectively. For simplicity, we assume
that both GSs and satellites transmit a single data unit in each
time slot, equivalent to the size of the model. Meanwhile, ow-
ing to the partial aggregation, any intermediate satellites that
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receive multiple models will transmit an aggregated model.
Reflecting these considerations, we set the capacities for both
transmission and storage arcs to one.

The vertex feature set M = MG ∪ ML captures the
features associated with each type of vertex. The vertex feature
indicates an aggregation cost in terms of energy consumption,
which is proportional to the number of models received, where
MG = {mg,t|1 ≤ t ≤ T, g ∈ VG} represents the aggregation
cost of vertices for GSs and ML = {ml,t|1 ≤ t ≤ T, l ∈ VL}
represents the aggregation cost of vertices for LEO satellites.

The arc feature set N = NG ∪NGL ∪NL ∪NLL captures
the features associated with each type of arc. The arc feature
sets NGL = {ng,l,t|(vg,t, vl,t+1) ∈ AGL} and NLL =
{nl,l′,t|(vl,t, vl′,t+1) ∈ ALL} represent a transmission cost in
terms of energy consumption. NG = {ng,g,t|(vg,t, vg,t+1) ∈
AG} and NL = {nl,l,t|(vl,t, vl,t+1) ∈ AL} represent a storing
cost in terms of the storage capacity.

B. Tree Construction Problem Formulation

In the context of TEDG, our goal is to construct a directed
tree rooted at vertex r, which represents GA. In doing so,
we aim to minimize both aggregation and transmission costs
while maximizing the number of upload-ready GSs included
in the tree. To this end, let xa ∈ x = {x1, x2, ..., x|A|} be a
binary variable that is 1 if arc a ∈ A is in the tree, 0 otherwise.
Similarly, let yv ∈ y = {y1, y2, ..., y|V|} be a binary variable
that is 1 if vertex v ∈ V is in the tree, 0 otherwise. To begin,
The transmission cost ctx(x) in the tree can be defined as

ctx(x) =
∑

a∈AGL∪ALL

na · xa, (1)

where na ∈ N . Subsequently, the aggregation cost cagg(y) in
the tree can be defined proportionally to the number of in-
degree vertices of the selected vertices yv ∈ y and the cost for
aggregating models, which can be derived as

cagg(y) =
∑
v∈VL

mv · yv · (|d(v)| − 1), (2)

where mv ∈ ML, d(v) is the set of in-degree vertices of vertex
v, and | · | return the size of given set. Lastly, the number of
upload-ready GSs included in the tree can be defined as

cGS(y) =
∑
u∈U

yu, (3)

where U ⊆ VG denotes the set of GSs becoming upload-ready
in the current interval.

Therefore, the objective function can be defined as follows

min
x,y

ctx(x) + cagg(y) + cGS(y), (4)

subject to

r ∈ {vl,T |l ∈ L}, (5)
yr = 1, (6)
xa ∈ {0, 1}, ∀a ∈ A, (7)
yv ∈ {0, 1}, ∀v ∈ V, (8)
xa ≤ yv, xa ≤ yv′ , ∀a = (v, v′) ∈ A. (9)

The constraints (5) and (6) denote that the vertex r belongs
to the set of vertices corresponding to the LEO satellites in
the last interval in the TEDG and should be included in the
tree. The constraints (7) and (8) confirm that the decision
variables xa and yv are binary. The constraint (9) represents
the fundamental condition for tree construction, capturing the
relationship between the decision variables xa and yv .

Meanwhile, constructing the optimal directed tree is NP-
hard [13]. Additionally, due to the large scale of STIN and its
heterogeneous computing capabilities and resource constraints,
each model of GS is updated and uploaded asynchronously.
Consequently, it is challenging to specify the set of GSs
U that are ready for upload and their precise timing and
corresponding vertices in the TEDG in advance. Furthermore,
constructing the optimal directed tree is NP-hard [13], and
under these uncertainties, it becomes a more intricate problem.
Lastly, the vertex indicating the upload-ready GS can only
be discerned at the time of readiness, necessitating online
problem-solving approaches.

IV. PREDICTED UPLOAD-READY-BASED ALGORITHM

To address the aforementioned challenges, we propose an
algorithm leveraging prediction results on which and when
GS will become upload-ready to construct the tree, which is
inspired by the algorithm outlined by [14]. The detailed steps
of the algorithm are depicted in Algorithm 1.

Algorithm 1 Predicted Upload-Ready GS-based Algorithm
Input: TEDG G = (V, E ,M,N ) and GA vertex r
Output: Predicted upload-ready GS-based tree T̄

1: Initialize tree T̄
2: Predict to obtain Û
3: Construct tree T̂ based on Û
4: while a vertex u appears do
5: Add the vertex u into U
6: if u ∈ Û then
7: Retrieve the path pT̂u,r from T̂
8: Add the path pT̂u,r into T̄
9: else

10: Find the shortest path p∗u,v′ from v to v′ ∈ VT̂
11: Retrieve the path pT̂v′,r from T̂
12: Add path p∗u,v′ ∪ pT̂v′,r into T̄
13: end if
14: end while

At the beginning of each interval, the algorithm initializes
the prediction-based tree, denoted as T̄ = (VT̄ ,AT̄ , r). Here,
both VT̄ and AT̄ are set to ∅, and r represents the root of
the tree (see line 1 in Algorithm 1). Then, the algorithm
predicts a set of vertices Û of TEDG, representing both the
GSs anticipated to be ready for upload and their respective
timings (see line 2 in Algorithm 1). Subsequently, the al-
gorithm constructs a preliminary tree T̂ = (VT̂ ,AT̂ , r) that
minimizing (4), assembled from the predicted vertex set Û to
GA r (see line 3 in Algorithm 1). As time advances, a vertex
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u ∈ UG appears, signifying a GS in STIN that just completed
local model training and is now upload-ready (see line 4 in Al-
gorithm 1). If the prediction is accurate (i.e., the vertex is in the
predicted set Û ), the path pT̂u,r = {(v(1), v(2), ..., v(k))|v(1) =
u, v(k) = r, ∀i ∈ {1, 2, ..., k − 1}, (v(i), v(i+1)) ∈ AT̂ }
connecting u with r is retrieved from the preliminary tree
T̂ (see lines 6-7 in Algorithm 1). Then, the vertices and
arcs that constitute the path are added to T̄ (see line 8
in Algorithm 1). Otherwise, the algorithm finds the shortest
path p∗u,v′ = {(v(1), v(2), ..., v(k))|v(1) = u, v(k) = v′, ∀i ∈
{1, 2, ..., k−1}, (v(i), v(i+1)) ∈ AGL∪ALL} with the Dijkstra
algorithm where v′ ∈ VT̂ denotes a vertex consisting of the
tree T̂ and retrieves a path pT̂v′,r connecting v′ with r from the
tree T̂ (see lines 10-11 in Algorithm 1). Then, the algorithm
adds the vertices and arcs of the merged path p∗u,v′ ∪pT̂v′,r into
T̄ (see line 12 in Algorithm 1).

V. EVALUATION RESULT

For performance evaluation, we compare our algorithm
PREDICTIVE with the following schemes: 1) OPTIMAL
where the tree is constructed with paths having minimum cost
based on the precise predictions; and 2) GREEDY where upon
identifying an upload-ready GS vertex over time the tree is
constructed with paths having the least cost to the GA without
considering vertices that will be determined in the future. The
performance is evaluated by the cost of the tree constructed by
each scheme. We consider a specific region defined by certain
latitudes and longitudes. In this region, we assume a STIN
formed by a 5-by-5 grid network of the satellite constellation
capturing 5 orbital planes with 5 satellites in each plane and
the GSs corresponding to each satellite’s coverage.

We set the length of each interval T = 6 and both
transmission cost na ∈ N and aggregation cost mv ∈ M
are set to one unit cost. The accuracy of the prediction is
defined as the ratio of the predicted vertices that match with
the actual appearing vertices. For simplicity, it is assumed that
predictions are made through trained models that guarantee
each accuracy level.

Fig. 2 presents the costs of constructed trees, which are
normalized by the cost of OPTIMAL scheme, depending
on the accuracy of the prediction. Across all the cases of
accuracy, PREDICTIVE shows a marginal performance gap
with OPTIMAL at most around 2% and this gap tends to
decrease as the accuracy increases. This observation implies
that our scheme can proficiently construct trees even where the
prediction model is incomplete or the prediction is challenging.
In contrast, GREEDY shows higher costs than our proposed
scheme. GREEDY incurs 1.12 to 1.14 times higher cost than
our proposed scheme and 1.17 times higher cost than OPTI-
MAL. This is because it constructs trees without considering
GSs that might be ready for upload in the future. By greedily
forming trees, it excludes potential opportunities for model
aggregations, which could lead to reduced data transmission
and, consequently, lower energy consumption.

Fig. 2. Normalized cost.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced an FL framework for STIN,
adopting a semi-asynchronous FL algorithm and leveraging
IOA. Our proposed algorithm found energy-efficient routing
paths even in situations with uncertain upload-ready timing
of GSs. This was supported by our preliminary result, demon-
strating the robustness of our approach with performance close
to optimal, even under inaccurate predictions. In our future
work, we will validate our proposed method in larger satellite
network environments.
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