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Abstract—In this paper, we develop task-oriented edge net-
works in which separate edge nodes perform decentralized infer-
ence processes with the aid of a cloud. Individual ENs compress
their local observations into uplink messages using task-oriented
encoder neural networks (NNs). Then, the cloud carries out a
remote inference task by leveraging received signals. We develop
fronthaul-cooperative DNN architecture along with proper uplink
coordination protocols. Inspired by the nomographic function,
an efficient cloud inference model becomes an integration of a
number of shallow DNNs. This modulized architecture brings
versatile calculations that are independent of the number of
ENs. Numerical results demonstrate the viability of the proposed
method for optimizing task-oriented edge networks.

I. INTRODUCTION

Recent advantages in deep learning techniques have got
great attention in implementing intelligent edge networks by
means of powerful deep neural network (DNN) models in-
stalled at network clouds. This triggers recent studies on task-
oriented edge networks that provide deep learning inference
services to edge nodes (ENs) [1], [2]. To achieve this goal,
ENs are requested to send their data samples to the cloud
through fronthaul links that are subject to wireless fading and
resource constraints.

Thus, an essential optimization challenge for task-oriented
networks involves a joint design task of neural edge encoders
and cloud inference models over resource-constrained wireless
fronthaul channels. Cooperative edge-cloud DNN architectures
were proposed for the task-oriented edge networks to execute
remote inference tasks, such as network management [3]–[5]
and image classification [6]–[10]. Neural edge quantization
techniques were presented [3], [4], [6], [7] for noiseless
fronthaul links. The additive Gaussian noise channels have
been recently incorporated [4], [8]. However, the impact of
wireless fading has not been studied adequately.

The massive connectivity requirements from ENs need
versatile DNN architectures at the cloud whose calculations
are independent of the number of ENs. Existing DNN models
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[6] accept concatenated edge messages, and thus they fail
to achieve the scalability with respect to the EN population.
The sum-pooling-assisted models in [8] aggregations received
signals for the scalable design, but this model cannot adjust
the compression rate.

This paper develops decentralized and scalable learning
architecture for task-oriented edge networks. We interpret an
oracle edge-cloud inference rule as the nomographic function.
Our investigation reveals that by exploiting the Kolmogorov-
Arnold (KA) representation [11], the oracle inference model
can be decomposed into a set of decentralized edge encoding
functions followed by a sum-pooling layer together with a
cloud inference function. This offers a scalable architecture
whose computations are irrelevant to the number of ENs. The
performance of the proposed approach is examined over clas-
sification tasks of the Tiny ImageNet dataset [12]. Numerical
results validate the effectiveness of the proposed approach over
conventional methods.

II. TASK-ORIENTED EDGE NETWORK

In task-oriented edge networks, a cloud and N ENs coop-
eratively carry out an inference of DNN models for a global
information sample a via resource-constrained fronthaul links.
Let N ≜ [1, N ] be the set of ENs. Due to the distributed
nature of practical EN deployment scenarios, each EN i can
only know its own local observation ai ∈ RA, which is given
by a subset of the global information a. The cloud collects
these local observations and infers a desired output variable
x ∈ RX through a DNN gφ with trainable parameter φ.

Each fronthaul link contains S ≤ A time-frequency re-
source blocks (RBs). To accomodate this fronthaul resource
constraint, each EN i compresses its local observation ai into
a fronthaul message si ∈ RS of length S. An encoder of EN
i is denoted by a learnable function fψi

: RA → RS with ψi

being a trainable parameter. The edge encoding process of EN
i is given by

si = fψi
(ai). (1)

The transmit power budget pE at the ENs is imposed to limit
the magnitude of each element of si.

The ENs send the fronthaul message si, ∀i ∈ N , to
the cloud through orthogonal fronthaul RBs. Each fronthaul
channel is corrupted by the wireless fading hi ∈ RS and
the the additive Gaussian noise ni ∈ RS . The corresponding
received signal yi ∈ RS is written by

yi = hi ⊙ si + ni ≜ hi(si), (2)
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where ⊙ is the element-wise multiplication and hi : RS → RS

is the channel transfer function.
The inference result x at the cloud is then obtained as

x = gφ(y1, · · · ,yN ) (3a)
= gφ(h1 ◦ fψ1

(a1), · · · , hN ◦ fψN
(aN )), (3b)

where ◦ is the composition operator. For supervised learning
tasks, the inference performance is evaluated by a loss function
l(x, t) where t ∈ RX denotes the desired label. Then, we can
formulate the training problem as

min
θ

L(θ) ≜ E[l(x, t)], (4)

where θ ≜ φ
⋃
{ψi : ∀i ∈ N} accounts for the trainable

parameter. The above problem can be addressed by state-of-
the-art stochastic gradient descent (SGD) algorithms. At each
training epoch, θ is updated as

θ ← θ − η∇θL(θ), (5)

where η indicates the learning rate.

III. INFERENCE DESIGN

We present an effective inference model for the task-
oriented edge network by leveraging the properties of the
nomographic function. Without loss of the generality, we
consider scalar label t ∈ R and scalar local information
ai ∈ R, ∀i ∈ N . It is assumed that the domain A of ai is
a compact set. Notice that our goal is to design gφ similar to
an oracle mapping c : AN → R which estimates the ground-
truth label t expressed by

t = c(a1, · · · , aN ). (6)

According to the analysis in [13], every function can be
categorized into the nomographic function. Thus, the oracle
mapping c can be rewritten as

c(a1, · · · , aN ) = u

(∑
i∈N

vi(ai)

)
, (7)

for some mappings u : R → R and vi : R → R. Here,
the inner mapping vi can be regarded as the composition of
the fronthaul channel and encoding DNN, i.e., vi = hi ◦ fψi .
Therefore, it suffices for the cloud DNN to accept the aggre-
gated received signal

∑
i∈N yi instead of the concatenation

[yT
1 , · · · ,yT

N ]T . By doing so, we can achieve the scalability
to the EN population N .

However, (7) is generally not viable for continuous map-
pings u and vi [14]. Such a restriction is not suitable for
the continuous-valued wireless fronthaul channels hi. This
difficulty can be addressed via the KA representation theorem
[11], which factorizes c as follows:

c(a1, · · · , aN ) =
∑

m∈M
um

(∑
i∈N

vmi(ai)

)
, (8)

where M = [1,M ] and um, ∀m ∈ M, and vmi, ∀(m, i) ∈
M×N are continuous.

To identify mappings um and vmi, we employ learnable
functions uλm

and vµmi
with λm and µmi being the trainable

parameters. With these DNNs at hand, the cloud DNN gφ can
be designed as

gφ(y1, · · · ,yN ) =
∑

m∈M
uλm

(∑
i∈N

zζm ◦ hi ◦ fψi(ai)

)
,

(9)

where the cloud DNN parameter ψ is given as φ =
{(λm, ζm) : ∀m ∈ M}. Here, additional trainable functions
zζm , ∀m ∈ M, each having parameter set ζm, establishes
the inner mapping function vµmi as vµmi = zζm ◦ hi ◦ fψi

with µmi ≜ (ζm, ψi). Consequently, the proposed cloud DNN
can be built by using M component DNNs uλm and zζm ,
∀m ∈ M, which is independent of N .

IV. NUMERICAL RESULTS

We assess the proposed method for the image classification
task of the Tiny ImageNet dataset [12]. It consists of 120, 000
color images of 200 classes, each with 500 training images,
50 validation images, and 50 test images. We first resize the
image size of all samples into 3× 64× 64. Only a subset of
this full-size image is available at ENs. For the simulation, we
use randomly cropped images with window size 48× 48, i.e.,
ai ∈ R3×48×48. The encoder DNN fψi

has one convolutional
layer, four residual blocks (ResBlocks) [15], and one fully-
connected layer. The convolutional layer has 64 kernels of size
7×7 with stride 2. The ResBlock comprises two convolutional
layers with kernel size 3 × 3 and a skip connection link.
The rectified linear unit (ReLU) activation is employed. The
output of the fourth ResBlock of the encoder DNN is flattened
into the vector processed by the fully-connected producing the
fronthaul message si. For the cloud DNN, we use M = 17
component modules zζm and uλm each realized with two-layer
MLP having 128 neurons. The Adam optimizer is applied with
the learning rate 10−4 and the batch size 256.

The transmit power constraint is set to pE = 1. Then, the
fronthaul signal-to-noise ratio (SNR) is defined as SNR =
1/σ2. For each training sample, the SNR values are uniformly
generated within [0 dB, 30 dB]. The Rayleigh fading is con-
sidered. We train the proposed model at Ntrain = 8 ENs and
directly test the trained model over a wide range of test EN
population Ntest ∈ [4, 8]. We consider the following three
baseline cloud DNN models.

• BaseNet: The cloud is assumed to have the perfect access
to the full-size image input. The DNN is constructed with
the encoder DNN followed by a three-layer MLP with a
hidden dimension of 2048.

• CatNet: A three-layer MLP accepts the concatenated
received signal as an input feature.

The depth and width of these baseline models are set to have a
similar level of model complexity to the proposed cloud DNN.

Fig. 1 presents the test accuracy performance of various
methods with respect to the fronthaul SNR for S = 16. For all
simulated Ntest, the proposed approach is superior to CatNet.
The proposed scheme approaches the ideal performance of
BaseNet as the SNR grows. Increasing Ntest improves the
accuracy of all schemes. CatNet exhibits a good accuracy
performance for small Ntest, but its performance severely
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Fig. 1. Accuracy performance with respect to SNR for S = 16.
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Fig. 2. Accuracy performance with respect to Ntest for S = 16.

degrades for Ntest = 8. The proposed scheme optimized for
fixed EN population Ntrain = 8 clearly outperforms CatNet,
demonstrating its scalability.

We depict the accuracy performance in Fig. 2 by changing
Ntest for S = 16. The proposed framework outperforms other
baseline methods regardless of Ntest. The performance of
CatNet does not improve with the test EN population since
it fails to extract useful features from edge-encoded signals.

V. CONCLUSIONS

In this paper, we have proposed decentralized and versatile
inference models for multiedge task-oriented communication
networks. We have exploited the notion of the nomographic
function to establish an efficient cloud DNN model along with
decentralized edge encoding DNNs over wireless fronthaul
links. The effectiveness of the proposed approach has been
demonstrated through simulation results.
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