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Abstract—Spiking Neural Networks (SNNs) are computational
models that emulate the spike-based communication found in
biological neural networks. These models are increasingly rec-
ognized for their potential to process sensor data in a biologi-
cally analogous manner, particularly within multimodal contexts
involving both image and audio data. Nonetheless, optimizing
the classification performance of deep SNNs is a complex
task, frequently impeded by the intricate interactions of hyper-
parameters. This paper addresses this challenge by employing
advanced hyper-parameter optimization techniques to enhance
the classification efficacy of a multimodal SNN. Our work not
only refines the performance of SNNs on heterogeneous data
types but also elucidates the intricate dynamics between hyper-
parameter configurations and classification accuracy within these
networks.

Index Terms—multimodal classification, spike, SNNs, hyper-
parameter optimization

I. INTRODUCTION

Spiking Neural Networks (SNNs) are a class of artificial
neural networks inspired by the functionalities of biological
neural systems [1]. Designed to replicate the dynamics of
neuronal activity, SNNs uniquely encode and convey infor-
mation via discrete events known as spikes, which propagates
through an intricately connected web of neurons and synapses.
With their capacity for low-power computation and parallel
processing, SNNs have attracted considerable attention in
recent years, particularly for their proficiency in handling data
from a variety of sensors. These networks excel in energy
efficiency and parallel processing capabilities, akin to the
human brain’s remarkable ability to integrate multisensory
information—from visual to auditory—enabling it to tackle
complex tasks [2].
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However, achieving optimal classification performance in
SNNs is a challenging task, largely due to the complex
interplay of hyper-parameters that govern the behavior of
these models. Consequently, our research aims to identify
the most effective combinations of hyper-parameters that can
enhance the classification capabilities of SNNs, particularly
when analyzing multimodal sensor data, including images and
audio. We explore a suite of optimization techniques, including
grid search, random search, and Bayesian optimization [3],
among others, to determine their efficacy in tuning SNNs for
superior performance.

To effectively manage the inherent complexity of multi-
modal data, our approach involves encoding each data modal-
ity into spike form for integration within the SNN architecture.
The primary goal of this research is to closely emulate bio-
logical neural systems in SNNs, thereby devising an efficient
technique for multimodal data processing. We anticipate that
this biologically inspired approach will not only improve the
accuracy of SNN-based classification models on multimodal
datasets but will also broaden their practicality across various
application domains.

II. RELATED WORK

A. Spiking Neural Network

Spiking neural networks (SNNs) are designed to emulate
the operational principles of biological brains and have been
recognized for their ability to effectively process data from
various sensors. These networks are particularly noted for their
energy efficiency and parallel processing capabilities [1]. In
SNNs, spikes serve as the unit of information, which prop-
agate through a complex network of neurons and synapses.
Unlike conventional deep learning networks that communicate
through continuous tensors or floating-point values, SNNs
operate on the principle of discrete events, signifying whether
a spike has occurred at a particular moment in time within a
specific neuron.

The most crucial component in the structure of SNNs is
the neuron model, which defines the role of neurons and
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how they function [4]. The occurrence of spikes is deter-
mined by differential equations representing various biological
processes. Several neuron models capture various aspects of
how neurons behave, and among them, we have chosen the
leaky integrate-and-fire (LIF) model [5]. This model is used
to describe the relationship between the current and voltage
inside the neuron, explaining how the membrane potential
changes through chemical and electrical processes when the
neuron receives input current. The differential equation for the
neuron model LIF is as follows:

τν
dV

dt
= (Er − V ) + ge(Ee − V ) + gi(Ei − V ). (1)

τν represents the time constant, indicating the time it takes to
update the membrane potential of the LIF neuron. A larger
value of v means that the membrane potential of neurons
changes more slowly, while a smaller value leads to faster
changes. Er represents the resting membrane potential of
the neuron. Ee and Ei are the equilibrium potentials of the
excitatory and inhibitory synapses, respectively. They indicate
at what potential the neuron’s membrane receives input when
synapses are activated. ge and gi are the conductance of
the excitatory and inhibitory synapses, respectively. Each of
them arises through excitatory synaptic signals and inhibitory
synaptic signals. V represents the current membrane potential
of the neuron.

The leaky integrate-and-fire (LIF) neuron model processes
information through a dynamic mechanism wherein presynap-
tic neurons, upon activation, transmit signals to postsynaptic
neurons. At each discrete time step, the membrane potential
of the neuron is updated to reflect incoming spikes, with each
spike incrementally raising the potential. Once this potential
ascends to a certain threshold voltage Vth, the neuron emits an
output spike. Immediately after firing, the membrane potential
is reset to a lower voltage Vreset, and the neuron enters a
refractory period during which it is temporarily incapable of
firing again, regardless of incoming spikes. This cycle allows
the neuron to emulate the timing-based information processing
seen in biological systems. When multiple neurons form a
network, this spiking mechanism enables complex temporal
patterns of activity to emerge. The intricate details of this
process are illustrated in Figure 1, which depicts the step-
by-step changes in membrane potential leading up to, and
following spike generation.

III. SYSTEM MODEL

A. Framework

This paper emphasizes the classification of multi-modal data
using SNNs. Our framework proposes a method that involves
transforming image and audio data into spike representations
and processing them simultaneously through the SNNs model,
thereby enabling effective classification of multi-modal data.

Figure 2 visualizes our proposed method. In our approach,
image and audio data are transformed into spike representa-
tions in distinct ways. For image data, spikes are generated
based on the pixels of the image, while for audio data, spikes

Fig. 1. Information processing mechanism of the LIF neuron model

are generated using methods that capture audio-related features
such as Mel Frequency Cepstral Coefficients (MFCC). These
spike-transformed data are input into the input layer of the
SNNs for training.

The SNNs have been designed to effectively learn two
different modalities of data. The image modality is input
to the SNNs model through an input layer composed of a
convolutional layer and a fully-connected layer, while the
audio modality is input through a fully-connected layer that
takes MFCC features as input. By using different input layers,
we simultaneously learn and integrate the features of both
modalities of data. We conducted research to optimize the
hyper-parameters required by the SNNs to achieve the best
classification performance.

B. Spike Encoding

To convert multimodal data into spikes, a data preprocessing
process is required that converts each data’s features into
extractable forms.

First of all, for image data, changes such as increasing or
decreasing brightness can be characterized by the image based
on the pixels in the image and can be applied to the spike
neuron model to be transformed into a spike. In this paper, the
characteristics of the image were extracted by the difference
between the bright and dark parts of the mnist image.

In the case of audio data, MFCC can be used to extract
audio features and convert them into spikes[6]. MFCC is
a numerical representation used to effectively represent and
analyze audio signals, capturing the unique characteristics of
sound. The process of extracting MFCC involves several steps.
First, the audio signal is divided into frames, and the Fast
Fourier Transform (FFT) is applied to each frame to obtain
a spectrum. The audio signal is initially represented in the
time domain, with time on the horizontal axis and sound
pressure on the vertical axis. Applying FFT, an algorithm that
transforms the signal into its frequency components, results
in a representation in the frequency domain, known as the
frequency spectrum. Mel filter bank is the process of applying
a filter to obtain mel values for frequencies obtained for each
frame. If you perform the Discrete Cosine Transform (DCT)[7]
operation, which compresses and expresses the matrix for mel
spectrum obtained earlier, the MFCC will come out as output.
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Fig. 2. Framework

The mel spectrum obtained in the previous process correlates
with frequencies, and it plays a role in de-correlating this
correlation using the log function in the DCT operation. The
mathematical calculation of MFCC is represented in Equation
(2), where m represents the frame number, n represents the
sample index of the converted signal used in DCT. n is used
to construct the MFCC coefficients obtained as a result of the
DCT transformation. R represents the number of mel filters,
the parameter of MFCC, and MFm[r] represents the mel filter
bank value.

mfccm[n] =
1

R

R∑
r=1

log(MFm[r])cos[
2π

R
(r +

1

2
)n]. (2)

C. Mean Squared Error Spike Count Loss

We reconstruct the multimodal classification problem as
a regression problem and use the mean squared error spike
count loss function to do this. In general, the cross-entropy
loss function is used a lot in the classification problem, which
attempts to activate the correct class at every stage of time and
prevent the wrong class from being activated at all. However,
the Mean Squared Error (MSE) loss function learns to activate
the correct class a given number of times over a given period,
and allows the wrong class to be activated less than a given
number of times [8]. In other words, the MSE loss function
allows you to deal with classification problems by converting
them into regression problems. The form of the MSE loss
function is as follows:

MSE =
1

n

∑
(y − ŷ)2. (3)

In Equation (3), y is the actual target value, ŷ is the value
predicted by the model. However, in this paper, we want to
apply MSE to spike count, and we independently calculate
and sum up the MSE loss for each output neuron by treating
it as the target value for how much each neuron should
generate spikes during a specific period. In this way, in our
paper, learning is done by adjusting the rate of occurrence of
spikes between the right and wrong classes.

IV. EXPERIMENT

A. Data

For the experiment, we used mnist image data and mnist
audio data. For image data, we used mnist image dataset with
labels ranging from 0 to 9. For audio data, we used mnist
audio dataset consisting of voice numbers with labels from 0
to 9.

B. Hyper-parameter Optimization

Hyper-parameters are one of the key factors that greatly
influence the learning and performance of deep learning
models, especially for complex models such as SNNs, where
the correct hyper-parameter setting plays an important role in
determining classification performance. This paper introduces
hyper-parameters and optimization techniques considered to
improve classification performance.

One of the hyper-parameters considered in this paper to
improve the classification performance of SNNs is the in-
cidence rate of spikes. Consideration of mean squared error
spike count loss is to set the rate of spike occurrence between
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the correct and incorrect classes as hyper-parameters. By
adjusting the incidence rate of spikes, you can promote the
occurrence of spikes for the correct class and suppress the
occurrence of spikes for the wrong class. Spike incidence is
adjusted during learning, and finding the optimal rate of spike
is critical to improving classification performance. Another
hyper-parameter considered is the learning rate that controls
the rate of weight update. Too large learning rates hinder
convergence, and too small learning rates can slow learning.
Therefore, choosing the right learning rate plays an important
role in SNNs learning process.

For hyper-parameter optimization, this paper utilized grid
search, random search, and Bayesian optimization techniques.

Grid search is a way to find the best combination by dividing
hyper-parameter space into several sections and trying all
possible hyper-parameter combinations in each section. Grid
search narrows the range of initial hyper-parameters and brings
you closer to the optimal combination.

Random search[9] is a navigation method that randomly
inputs hyper-parameter values and generates models using
hyper-parameters that show superior values. It has the advan-
tage of reducing computational costs while achieving good
results.

Bayesian optimization [10] is a probabilistic optimization
process that reduces unnecessary hyper-parameter iterations to
quickly find the optimal hyper-parameter. It is a technique to
find the optimal solution with the unknown objective function
to the maximum (or minimum) and consists of an acquisition
function and a surrogate model. The role of the acquisition
function is to find the next most appropriate hyper-parameter
candidate. Mathematically determine the next search point
based on a model with probabilistic estimation for the objec-
tive function. Alternative models are probabilistic representa-
tions and models of objective functions. Bayesian optimization
attempts optimization with probabilistic estimation.

By applying these optimization techniques, we focused on
adjusting spike incidence and learning rates and improving
the classification performance of SNN models. By finding
the best hyper-parameter combination, we aim to improve
the performance of SNNs in multimodal data classification
tasks and increase their availability in a variety of applications.

V. RESULT

This section presents the results of classification
experiments for image and audio data as unimodal sets,
as well as the results for multimodal classification, and
confirms the classification accuracy based on hyper-parameter
settings. In multimodal classification, the best performance
was achieved with a combination of hyper-parameters: a
learning rate of 0.0001, a correction rate of 0.8, and a decay
rate of 0.2. Random searches yielded the best results in each
classification experiment, particularly achieving the highest
accuracy in image classification. Performance differences
were also observed between unimodal and multimodal
classifications for image and audio data, respectively. Image

classification demonstrated higher accuracy than audio
classification, and multimodal classification achieved higher
accuracy than audio unimodal classification. This suggests
that multimodal approaches can improve classification
performance by leveraging various types of input data.
Due to SNNs’ parallel processing capabilities, they can
effectively integrate information from both modalities. In
all cases, random searches achieved the highest accuracy,
indicating that this method can effectively navigate the
complex properties of multimodal data. Random searches
discover the best combination by randomly testing different
hyper-parameter combinations, which often leads to improved
performance. Tables 1 and 2 below show the optimization
results for unimodal and multimodal data, respectively.

TABLE I
UNIMODAL OPTIMIZATION RESULT

Image modal Audio modal
method hyper-parameter accuracy hyper-parameter accuracy

Grid
Search

Learning rate = 0.001
Correct rate = 0.7

Incorrect rate = 0.3
92.97

Learning rate = 0.02
Correct rate = 0.7

Incorrect rate = 0.3
81.22

Random
Search

Learning rate = 0.01
Correct rate = 0.8

Incorrect rate = 0.2
94.16

Learning rate = 0.0001
Correct rate = 0.8

incorrect rate = 0.2
86.64

Bayesian
Optimization

Learning rate = 0.02
Correct rate = 0.8

Incorrect rate = 0.2
93.24

Learning rate = 0.001
Correct rate = 0.7
Incorect rate = 0.3

84.53

TABLE II
MULTIMODAL OPTIMIZATION RESULT

method hyper-parameter accuracy

Grid Search
Learning rate = 0.0001

Correct rate = 0.8
Incorrect rate = 0.2

89.73

Random Search
Learning rate = 0.0001

Correct rate = 0.8
Incorrect rate = 0.2

92.67

Bayesian Optimization
Learning rate = 0.001

Correct rate = 0.8
Incorrect rate = 0.2

91.88

VI. CONCLUSION

In this paper, we explore an approach to improve
the classification performance of multimodal data using
Spiking Neural Networks (SNNs) through hyper-parameter
optimization. We employ SNNs to simultaneously process
both image and audio data, effectively performing
classification tasks on this multimodal information. The
utilization of hyper-parameter optimization techniques to
enhance the classification capabilities of the SNNs model
represents a significant advancement in the field of multimodal
data classification. These research findings have the potential
to be applied in practical scenarios that involve the processing
and classification of multimodal data, thereby increasing the
applicability of SNN models that mimic biological neural
processes.
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