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Abstract—Data augmentation techniques are widely employed
in the training of deep neural networks (DNNs), and recent
research verifies their effectiveness across diverse tasks. However,
their impact on the model’s ability to capture semantic concepts
has not been widely investigated. In this paper, we analyze
models trained with various mixed-sample data augmentation
strategies in terms of neural-concept association. Experimental
results suggest that mixed sample data augmentation strategies
make the model less reactive to semantic concepts.

Index Terms—mixed sample data augmentation, explainable
AI, explainability, concept study

I. INTRODUCTION

Mixed sample data augmentation strategies utilize more than
one sample to create augmented (mixed) input [22], [27], [28].
These strategies enhance the generalization ability of deep
neural networks (DNNs), achieving higher performance in
various fields such as classification [5], [27], object recognition
[7], semi-supervised learning [4], and self-supervised learning
[11], [18]. Furthermore, some studies reported that models
trained with mixed sample data augmentation strategies are
more adversarially robust [15], [22], [27].

While augmentation strategies’ effect on model performance
and robustness is widely studied and verified, their effect
on interpretability in terms of neural-concept association has
not been widely studied. In this paper, we present semantic
concept association with the inner units of the model when the
model is trained with various data augmentation strategies.

DNNs achieved high performances in various tasks and
mixed sample data augmentation strategies even boosted their
success. However, because of their black-box nature, it is
challenging to understand their decision-making process. A
wide range of efforts has been made to make DNN models
reliable and interpretable for humans [1]–[3], [12], [14], [20],
[21], [29]. A common approach includes feature attribution
methods, where importance scores are assigned to input fea-
tures (e.g., a heatmap where each pixel value is mapped to
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Fig. 1. An overview of the augmented image of Cutout, Mixup, CutMix, and
SaliencyMix.

the important score). Other lines of research include concept-
based studies. It aims to give insight into the internal unit’s
role in recognizing human-perceptible concepts. In this work,
we focus on the latter and study the effect of mixed sample
data augmentation by analyzing captured semantic concepts
by the model.

II. RELATED WORK

A. Mixed Sample Data Augmentation

In this study, we explore the effect of mixed sample
augmentation on neural-concept association. To this end, we
analyze popular mix-based augmentation strategies: Mixup
[28] and CutMix [27]. We additionally inspect Cutout [8] and
SaliencyMix [22] to understand the effect of CutMix-based
augmentation further, as CutMix can be seen as a combination
of Cutout and Mixup, and SaliencyMix introduces “saliency
guidance” to CutMix. An overview of each method is shown
in Fig. 1.

Cutout drops fixed-size square-shaped regions from a ran-
domly chosen position at input space. Dropped regions are
filled with zero. Cutout is interpreted as regional dropout,
which is a subfield of the regularization techniques. Regional
dropout randomly removes continuous regions from an image
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or feature space. The main difference between another well-
known regional dropout method such as [30] is that Cutout
erases a fixed-size box.

Mixup aims to augment both the input image and the label.
It mixes two samples by linear interpolation where the beta
distribution determines the mix ratio. Various works suggested
follow-up Mixup-based augmentation strategies using more
elaborate algorithms for mixing [6], [16], [23], [26].

CutMix is inspired by Cutout and Mixup [27]. its algorithm
includes removing small square sections from an image,
similar to Cutout, and replacing those sections with randomly
selected images, like Mixup. The mix ratio is drawn from the
beta distribution, and the label is also mixed by the proportion
of the augmented image, as in Mixup.

SaliencyMix adds saliency concepts to CutMix. That is,
SaliencyMix carefully selects “salient” regions of the source
image before attaching them to the target image. Here, the
method introduced in [17] is utilized to detect salient regions.
Other factors such as mix ratio and label mixing strategies are
the same as Mixup and CutMix.

The classification performance (top-1 error) of models
trained on architecture ResNet-50 on ImageNet is as follows:
SaliencyMix (21.26%), CutMix (21.40 %), Mixup (22.58 %),
Cutout (22.93 %), and baseline (23.68 %).

B. Robustness and Interpretability

Other lines of work studied the relationship between adver-
sarial robustness and interpretability of the model. [9] found
that adversarially robust models exhibit more interpretable
behavior (i.e., their attribution maps are more alike with the
input). [24] further explains this observation by considering
the decision boundary. They showed that robust models have
smoother decision boundaries, and therefore are more inter-
pretable.

However, [9] and [24] defined interpretability as the
similarity between an input image and the attribution map. In
other words, if the visual pattern of the saliency map resembles
the input image, it is considered interpretable. However, this
definition of interpretability is an entirely different concept
from our work. Our study investigates the interpretability
of various models focusing on the semantic representations
captured by inner neurons.

III. CONCEPT STUDY

Human-understandable Concepts are defined using Net-
work Dissection [2], [3]. One can quantify the interpretabil-
ity of different models by understanding the inner units’
roles [13]. Individual units can detect concepts, even though
the concepts are not annotated in the training data. For
example, units that detect a single concept such as “desk”,
“computer”, or “keyboard” emerge when the input is simply
provided as “office”. The main idea of Network Dissection
is to quantify the disentangled representations learned by
individual units of the network. “Concepts” consists of high-
leveled ones (e.g., objects) and low-leveled ones (e.g., colors).
Network Dissection scans the entire dataset, unit (neuron), and

Cat (object)   IoU 0.108   Unit 1425

Hand (part)   IoU 0.082   Unit 393

Fur (material)   IoU 0.067   Unit 1326

Red (color)   IoU 0.090   Unit 386

Fig. 2. Detected concepts by network dissection in the baseline (ResNet-50
trained on ImageNet) on each category.

predefined concepts to find detector units. A unit is defined
to be a detector of a specific concept if the overlap of the
activation of the unit and segmentation annotation of the
concept exceeds the threshold. One can understand the role
of the inner units by looking at the concepts detected by the
units.

Network dissection [2], [3] aims to find disentangled con-
cepts detected by individual units (neurons). It evaluates every
unit’s activation map for every image in the entire dataset.
Firstly, an activation map Ak of unit k is upscaled by Sk to
compare it with the input resolution mask for concept c, Lc.
Then, a binary mask Mk is created by applying threshold Tk

so that only activation above the threshold is set to 1 and others
to 0. Tk is determined by the distribution of a unit’s activation
ak that satisfies P (ak > Tk) = 0.01. Finally, the intersection
over union (IoU) between Mk and Lc is calculated as

IoUk,c =

∑ |Mk(x) ∩ Lc(x)|∑ |Mk(x) ∪ Lc(x)| . (1)

IoUk,c refers to the accuracy of unit k in detecting concept
c. Unit k is defined to be a detector unit of concept c if
IoUk,c exceeds a threshold. Examples of detected concepts
via individual neurons are shown in Fig. 2.

IV. EXPERIMENTS

A. Experimental Setup

We introduce the experimental setup used in this study.
Utilized models are released by [27] and [22]. All models
share the base structure of ResNet-50 [10]. Models are trained
on ImageNet [19] with a batch size of 256 for 300 epochs
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Fig. 3. The number of unique concepts of the baseline and models trained with Cutout, Mixup, CutMix, and SaliencyMix at the last convolutional layer on
various IoU thresholds. (a), (b), and (c) shows the experimental results from the IoU threshold 0.03, 0.04, and 0.05, respectively.

with weight decay - the initial learning rate is set to 0.1 and
later decayed by the factor of 0.1 at three epoch steps (75,
150, and 225). All models including the baseline are trained
with traditional data augmentation strategies such as flipping,
cropping, and resizing.

B. Experimental Result

We set the IoU threshold to [0.03, 0.04, 0.05] (i.e., a unit
is a detector unit for concept c if IoUk,c > [0.03, 0.04, 0.05]).
Concepts are divided into four categories - object, part, ma-
terial, and color. We use the segmentation model UPerNet
(Unified Perceptual Parsing Network) [25] trained on the
ADE20K dataset [31]. The segmentation model is trained to
segment predefined concepts. We evaluate five models trained
on ImageNet and probe the final convolutional layer to count
the number of unique concepts detected by the detector unit.

The experiment result is shown in Fig. 3. The number of
human-recognizable concepts is decreased in models trained
with mixed sample augmentation methods on all probed
thresholds. When the threshold is set to 0.04, the number
of detected unique concepts scored 71, 61, 66, 63, and 53
on the baseline, Cutout, Mixup, Cutmix, and SaliencyMix
respectively. Baseline found 42, 17, 8, and 4 detectors on
object, part, material, and color respectively. Among the
models trained with mixed sample data augmentation, Mixup
showed the best results. Cutout and Mixup increase only the
number of color detectors of all categories. For CutMix, more
object detectors are found than the baseline (42 → 44), but
fewer detectors are observed with all other categories (12, 6,
and 1 on part, material, and color). The smallest number of
detectors are found in SaliencyMix in every category (36, 10,
6, and 1 on object, part, material, and color).

A similar tendency is observed for threshold = 0.03, scoring
96, 82, 91, 80, and 71 unique concepts on the baseline,
Cutout, Mixup, Cutmix, and SaliencyMix respectively. Mixup

increased the number of color detectors than the baseline
and SaliencyMix found the smallest number of detectors in
all categories except material. Mixup showed the second-
best results among probed models and the best results among
models that are trained with augmentation methods that utilize
more than one sample (i.e., Mixup, CutMix, and SaliencyMix).

However, when the threshold is set higher (0.05), Mixup’s
ability to capture disentangled concepts dropped to third place.
Still, Mixup scored the best among Mixup, CutMix, and
SaliencyMix. We hypothesize that CutMix and SaliencyMix
only use a small fraction of the source image, thereby less
exposed to the whole view of semantic concepts. While Mixup
is more successful at detecting disentangled concepts than
CutMix and SaliencyMix, it still falls short of the ability
compared to the baseline. Mixing algorithms may confuse the
classifier to detect semantic concepts.

The interesting thing is that the number of object de-
tectors also decreased on models trained with SaliencyMix
(54 → 46, 42 → 36, and 33 → 24 on threshold [0.03,
0.04, 0.05]). It is known that the model classification score
is positively correlated with the number of unique object
detectors (i.e., the higher the classification score, the more
unique object detectors are found). Therefore, the reasonable
assumption is that the greatest number of object detectors
will be found at SaliencyMix (because SaliencyMix provides
the best classification accuracy on ImageNet-trained ResNet-
50). However, despite the performance gain, models trained
with SaliencyMix have the fewest number of object detectors,
presenting the smallest degree of disentanglement.

The decrease of concept detectors in models trained with
augmentation strategies despite the performance gain suggests
that mixed sample data augmentation strategies are not a
panacea - they boost model performance on various tasks but
degrade the ability to capture human-perceptible concepts.
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V. CONCLUSION

This paper delves into the overlooked aspects of mixed
sample data augmentation strategies: their internal semantic
representation. More specifically, models trained with various
mixed sample data augmentation are evaluated through Net-
work Dissection, using the number of disentangled concepts.
Our experiment revealed that the number of detected disen-
tangled concepts decreased when models were trained with
mixed sample augmentation strategies. Data mixing strategy
in mix-based methods potentially hinders the emergence of
neurons that detect disentangled concepts.
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