
An Empirical Design and Implementation of Job
Scheduling Enhancement for Kubernetes Clusters

Van-Binh Duong
School of Electronic Engineering,
Soongsil University, Seoul, Korea

binhdv@dcn.ssu.ac.kr

Duong Phung-Ha
School of Electronic Engineering,
Soongsil University, Seoul, Korea

phunghaduong@dcn.ssu.ac.kr

Jangwon Lee
School of Electronic Engineering,
Soongsil University, Seoul, Korea

jangwon.lee@dcn.ssu.ac.kr

Younghan Kim
School of Electronic Engineering,
Soongsil University, Seoul, Korea

younghak@ssu.ac.kr

Abstract—Batch job scheduling is a popular method in scheduling
topics achieving considerable results. However, it is novel to
bring those achievements to the cloud where problems of en-
vironments would limit algorithms. Although some projects have
been introduced recently with benefits directly targeting machine
learning jobs in cloud-native environments, there are gaps to
be fulfilled. Consequently, this paper proposes an empirical
design and implementation of deadline-aware enhancement of job
scheduling for cloud-native environments. The proposal’s target
is to automatically monitor, provision, and maintain machine
learning jobs for batch job scheduling in cloud-native environ-
ments. The performance evaluation shows that the proposal has
succeeded in reducing the average response time of machine
learning jobs scheduled by different algorithms.

Index Terms—deadline-aware, kubernetes, batch job scheduling,
machine learning job, cloud computing

I. INTRODUCTION

Batch job scheduling is a method of collecting a bunch of jobs
to execute at a time. Those jobs would wait in a queue to be
scheduled in a resource. There are two important parameters
in the batch job scheduling, namely, the window time that
is the amount of time the scheduler waits for the incoming
jobs, and the maximum number of jobs that are contained
in a collection. Those parameters could be manually fixed
or dynamically changed based on the application design. One
of use cases of batch job scheduling is in machine learning
systems where many different proposals were proposed to
improve the job completion time, as well as the accuracy of
training models. However, batch job scheduling is the pre-
scheduled stage where the incoming jobs are collected before
being scheduled in a resource. Therefore, to optimize resource
usage and management, scheduler algorithms have to be used
reasonably in the scheduled stage. Especially, in cloud-native
environments, resource management affects different aspects
(i.e., performance, functionality, and cost) that build a system.
Inefficient resource management has a direct negative effect
on a system’s performance and cost. It leads to indirect effects
on the system’s functionality. To this end, an efficient cloud
system for machine learning jobs should care about both
aforementioned stages.

This paper aims to build up a scheduling system for machine
learning jobs in cloud-native clusters in which incoming jobs
are analyzed and observed to define a suitable queue wait
time (i.e., the deadline period - a job has to wait before
being scheduled) and different scheduling algorithms could
be used to schedule submitted jobs in a resource to efficiently
make use of resources. This paper proposes a deadline-aware
batch scheduler focusing on cloud-native clusters. It uses
jobs’ resource characteristics and historical observations from
submitted jobs to calculate the suitable queue wait time for
incoming jobs in the pre-scheduled stage and in the scheduled
stage, different scheduling algorithms could be interchanged
based on resource management strategy. The approach is to
ensure Service Level Agreement (SLA) satisfaction (which
is the agreement on a job’s runtime between the user and
the system). Furthermore, a sophisticated procedure is also
developed to intervene in tasks of scheduled jobs to reach
optimized performance and user SLA satisfaction while jobs
are running in resources. The details of the proposal are
discussed in the rest of the paper. The sequel of the paper
is organized as follows: Section II provides a brief review
of related works. The proposal of this paper is contained
in Section III. Section IV describes experimental setup and
evaluation results. Finally, some conclusion remarks are given
in Section V.

II. LITERATURE REVIEW

In the paper [1], an introduced SLA-aware scheduling al-
gorithm that utilized domain-specific properties of machine
learning inference to batch input requests intelligently with
dynamic batch size and timeout by utilizing a batch state
table to track the batching status among the executing inputs.
Research [2] proposed admission control and resource schedul-
ing algorithms applying the data splitting-based method to
give parallel processes on the split data sets as optimization
solutions for Analytics-as-a-Service platforms. The paper [3]
presented a deep learning-driven machine learning cluster
scheduler to place training jobs in a resource server that
minimizes interference and maximizes performance. In [4],

191979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024



a Shortest Processing time First scheduler combined with a
task classification (i.e. small or large task) was proposed to
generate scheduling improvements. In research [5], the average
time was simply calculated based on the prior tasks that a user
submitted. A model prediction was proposed to predict the
wait time for a task queue and then classify jobs that are similar
using past queue data in [6]. The paper [7] depicted queue
congestion as an estimate of the state based on the degree of
congestion for the queue wait time predicted at time t and then
utilized a Markov model to anticipate the queue wait times at
time t+1. Research [8] explored the use of machine learning
to predict the queue wait time for jobs using real-world data
to train prediction models.

Previous research concentrated on the pre-scheduled stage
where the choice of algorithms for the scheduled stage is
limited. Research on queue wait time prediction did not contain
aspects of machine learning jobs on the cloud. Because of
the relationship between tasks in a job, the machine learning
jobs in a cloud cluster cannot be served at once which is
different from pure cloud computing jobs. Therefore, each task
needs to wait for their turn to be processed which brings a
problem of scalability. Moreover, using a prediction model
to predict the queue wait time requires large-scale data sets
and the prediction phase also consumes an amount of time
when scheduling a job. Consequently, a solution that could
handle both stages and provide efficiency for machine learning
jobs in cloud-native clusters is a necessary need. Besides,
managing the jobs after being scheduled is also vital. This
implies that jobs waiting in queue need to have a deadline
to prevent resource starvation and running jobs also need
a deadline to prevent resource over-occupation. To achieve
those goals, this paper proposes a design, Deadline-aware Job
Scheduling, which proactively provides a job deadline queue
time based on jobs’ characteristics to improve scheduling
algorithms and ensure job completion satisfaction. The design
provides flexibility in choosing scheduling algorithms based
on resource status. As a result, this paper has following key
contributions:

• A procedure to analyze job characteristics with historical
data in order to define the queue wait time of a job to
guarantee the user SLA and enhance scheduling algo-
rithms.

• A cloud-based Deadline-aware Job Scheduling is de-
veloped to automatically manage and maintain machine
learning jobs in a Kubernetes cluster.

• An active procedure to modify running heavy tasks of a
job to reduce SLA degradation.

III. PROPOSAL: DEADLINE-AWARE JOB SCHEDULING

A. Problem Formulation

A machine learning job contains different tasks with different
resource requirements. So the execution time (or runtime) of a
job is a sum of tasks’ execution time (Equation 1). The target
of the problem is to satisfy the Expression 2 where Tω is the

TABLE I: List of acronyms and terminologies.

β Deviation of the system
CPU Central Processing Unit
CRD Custom Resource Definitions
DRF Dominant Resource Fairness
GPU Graphics Processing Unit

H The heaviest task
Job CM Job Controller Manager

K A Kubernetes cluster
P A profile

PGPU A profile containing GPU information
RAM Random Access Memory
SLA Service Level Agreement

SRAM Sum of RAM requirements
SCPU Sum of CPU requirements
SGPU Sum of GPU requirements
Tω Queue wait time
Tϵ Execution time

Fig. 1: Illustration of stochastic approach operating over dis-
tinct randomly generated queue states using queue wait time
prediction models [8].

queue wait time of a job, Tϵ is the amount of time needed to
execute the job and β is the deviation of the system. The β
is calculated as 5% out of SLAtarget which is the acceptable
margin of error.

Tϵ =

N∑
i=1

tϵ (1)

SLAtarget + β ≥ Tω + Tϵ (2)

The proposed Diagnoser uses Algorithm 1 to calculate the
queue wait time for each job by making use of past job
observations to practically define the Tω of each job. The
Dominant Resource Fairness (DRF) [9] is used for determining
job resource dependence to efficiently decide the most suitable
queue wait time of a job.

The Algorithm 1 determines the dominant resource of each
job and then uses that information to search Tϵ from a profile.
For instance, if the job’s dominant resource is CPU, then
Diagnoser finds the observation from the profile having a
matched CPU (or the nearest higher one). For the RAM, the

192



Fig. 2: Deadline-aware Job Scheduling Architecture.

Algorithm 1 Job Deadline Endowment Algorithm

1: Cluster K, Queue wait time Tω , Execution time Tϵ

2: P ← Profile_table(CPU,RAM, execution)
3: PGPU ← Profile_table(CPU,GPU,RAM, execution)

4: τi ← taski(CPUi, RAMi)
5: J ← [τi, ..., τn]
6: SCPU =

∑n
i=1 τi.getCPU()

7: SRAM =
∑n

i=1 τi.getRAM()
8: if SCPU ÷K.getCPU() > SRAM ÷K.getRAM() then
9: Tϵ = search{P,DRF (CPU)}

10: Tω = SLAtarget − Tϵ + β
11: else if SCPU ÷K.getCPU() < SRAM ÷K.getRAM()

then
12: Tϵ = search{P,DRF (RAM)}
13: Tω = SLAtarget − Tϵ + β
14: else
15: Tϵ = search{PGPU , DRF (GPU)}
16: Tω = SLAtarget − Tϵ + β
17: end if

matched one (or the nearest higher one) is also selected. This
makes sure that the prior resource provided is enough for the
job. When Tω is a negative value, the controller automatically
alerts the user to change to a suitable SLAtarget.

B. Deadline-aware Job Scheduling Architecture

The proposal not only aims to obtain the target SLA but it
is also developed to holistically provide a deadline-aware ma-
chine learning jobs scheduling and management system. Figure

Algorithm 2 Job Execution Deadline Management Algorithm

1: Heaviest_task H , Ready_tasks Φ
2: Γ ← running_tasks[taski, ..., taskn]
3: Q ← queueing_tasks[taskj , ..., taskm]
4: while Q not empty do
5: H = search{Γ}
6: for taskj in Q do
7: if (

∑
Φ⊕ taskj .getTω) ≤ H.getTω then

8: Φ.append(taskj)
9: end if

10: end for
11: status_update{H,RUN → STOP → QUEUE}
12: for taskj in Φ do
13: status_update{taskj , QUEUE → RUN}
14: end for
15: end while

2 describes the Deadline-aware Job Scheduling architecture,
the Deadline-aware Controller consists of three components,
namely, Observation Profiler, Wait time Diagnoser, and Job
Monitoring.

The Controller receives requests and constructs job profiles
using diagnoses from the Diagnoser. It also supports collecting
job observations from the cluster and monitors the scheduling
status. The Profiler acquires observation collections to process
and store that information as a resource for the Diagnoser. The
Job Monitoring uses Algorithm 2 to monitor the running jobs
at the task level which puts the deadline on them. There is
a trade-off of dropping SLA-excessed jobs to keep the SLA

193



Fig. 3: An example of Job scheduling and monitoring management workflow where Volcano is used as a job scheduler.

of other jobs. The Algorithm finds the running heaviest task
H that is over the assigned execution time and then replaces
it with other lighter tasks and reschedules the related job of
the task H . With this mechanism, the proposal maximizes the
number of SLA-satisfied jobs.

In comparison with using prediction models, as in Figure 1,
they used different queue states and job details to predict
a hundred wait time predictions using a trained model and
then took the average wait time predictions to obtain the
final result. Because queue state data is mostly affected by
resource utilization, it could remain unchanged for a long time
if resources are being occupied by a degraded task/job. This
leads to biased results from the trained model that are not able
to reflect the actual status of resource utilization. Meanwhile,
in Figure 3, the Wait time Diagnoser uses historical and real-
time job observations from resource nodes with Algorithm 1
to quickly assign/modify a wait time queue for a job which
is faster than waiting for a combined result from a hundred
predictions. Simultaneously, the Job Monitoring monitors the
status of running jobs using real-time job observations with
Algorithm 2 to detect degraded tasks, which reduces the
interference in machine learning jobs. As a result, the proposal

could integrate with different cloud schedulers to accelerate
them in aspects of resource utilization, jobs’ runtime, and jobs’
lifecycle management.

IV. PERFORMANCE EVALUATION

A. Experimental Environment

In terms of implementation, the Operator pattern (software
extensions to Kubernetes) [10] approach is used to implement
the proposed design. The Controller is built using Custom
Resource Definitions (CRDs) [11] to apply algorithms to
Kubernetes clusters. After the job is scheduled, the Controller
continues to observe the state of the pods in which the job’s
tasks are scheduled to maintain the job life cycle. Meanwhile,
the Profiler is programmed in Python language to effectively
process data collected from the NodeExporter. The NodeEx-
porter and Scheduler are built based on Prometheus [12] and
Volcano [13] (which is a Kubernetes native batch scheduling
system), respectively. The Controller passes submitted jobs
with deadline information to Volcano to accelerate deploying
jobs in the cluster.

The proposal was implemented on one Kubernetes cluster. The
cluster was composed of 3 nodes (1 master and 2 workers).

194



apiVersion: sla-operator.dcn.com/v1alpha1

kind: Slaml

metadata:
name: slaml-scheduling

namespace: machine

spec:
isSla: true

slaTarget: 50

name: pytorch-ml-job

tasks: [

{

taskName: "ml-task-1",

type: data,

containerImage: "data-preprocessing",

containerRegistry: "ddocker122",

containerTag: "latest",

containerReplicas: 1,

CPU: "2m",

memory: "2Mi"

},

{

taskName: "ml-task-2",

type: feature,

containerImage: "feature-extraction",

containerRegistry: "ddocker122",

containerTag: "latest",

containerReplicas: 3,

CPU: "3m",

memory: "2Mi"

},

{

taskName: "ml-task-3",

type: model,

containerImage: "model-training",

containerRegistry: "ddocker122",

containerTag: "latest",

containerReplicas: 3,

modelParams: [

{"batch-size": 64, "epochs": 14, "lr": 0.0001},

{"batch-size": 128, "epochs": 56, "lr": 0.0001},

{"batch-size": 256, "epochs": 14, "lr": 0.0001}]

GPU: "4",

memory: "4Mi"

}]

Listing 1: An example of job request to Deadline-aware
Cluster.

Each node was hosted by a server with Ubuntu 20.04.5 LTS
OS and 5.4.0-153-generic kernel. The master node was charac-
terized by 8 vCPUs and 33 Gb memory. The worker nodes, on
which experimental jobs were scheduled, had the configuration
of 4 vCPUs and 16 Gb memory each. The cluster was
configured with Kubernetes version v1.23.6, Volcano version
v1.8.0, Python version 3.8, Prometheus version v0.12.0, and
Kubebuilder [14] (i.e, CRD development tool) version v3.11.1.
The Profiler was set up with the Google Cluster Workload
Traces [15] data set as historical observations. The data set

Fig. 4: Deadline-aware jobs scheduled by different algorithms.

Fig. 5: Job schedulings.

was processed to get the required fields for experiments as
follows: the required RAM and CPU values from the task were
extracted, and the execution time of each task was calculated
by subtracting the completion time from the starting time of
each task.

B. Scenarios Description

The setup experiment was to show the guaranteed user SLA
of a job in an environment with a shortage of resources.
A number of dummy jobs were kept running on the cluster
to consume around 90% resources. The scheduler algorithms
such as Gang, Binpack, and Task-topology were tested in the
cluster to assess how the Deadline-aware Operator accelerates
scheduling algorithms in Volcano.

195



The MNIST [16] data set was used to build up a machine-
learning problem using Pytorch. The job flow was split into
different tasks, namely, data preprocessing, feature extraction,
and model training. Each task had different resource require-
ments that resulted in different SLAs. A job request can be
submitted using a yaml file as shown in Listing 1.

C. Experimental Results Analysis

The Average Response Time (ART) was used as the perfor-
mance metric which is the average time between the request
from end-users for the job execution to the result response as
follows.

ART =

∑N
i=1 responsei

N
(3)

Figure 4 shows that the proposal reduces the ART of schedul-
ing algorithms in Volcano. It queues incoming jobs in a
manageable manner with the Wait time Controller. In Figure
5, the number of failed jobs that need to be rescheduled is
different among algorithms. Because the goal of the Binpack
scheduling algorithm is to fill as many existing nodes as
possible that could increase the degradation of tasks when too
many tasks utilize the same node’s resources. It results in the
highest ART. The Deadline-aware Operator helps reschedule
degraded jobs to reduce a noticed ART of Binpack algorithm.

V. CONCLUSION

In this research, a proposal for machine learning batch job
scheduling in cloud-native clusters is presented, which proac-
tively offers the queue wait time for each job based on
jobs’ features and historical observations to accelerate job
scheduling algorithms. Machine learning jobs in a cloud-
native cluster are automatically monitored, provisioned, and
maintained by the Deadline-aware Job Scheduling using the
Operator pattern approach. According to the performance
evaluation, the proposal significantly enhanced the average
response time of machine learning job flows under the pressure
of a high load of requests and limited resources.

ACKNOWLEDGMENT

This work was partly supported by Institute of Information
& communications Technology Planning & Evaluation (IITP)
grants funded by the Korea government (MSIT) (No. 2022-
0-01015, Development of Candidate Element Technology for
Intelligent 6G Mobile Core Network) and partly supported
by the MSIT (Ministry of Science and ICT), Korea, under
the ITRC (Information Technology Research Center) support
program (IITP-2023-RS-2023-00258649) supervised by the
IITP (Institute for Information & Communications Technology
Planning & Evaluation).

REFERENCES

[1] Yujeong Choi, Yunseong Kim, and Minsoo Rhu. “Lazy
Batching: An SLA-aware Batching System for Cloud
Machine Learning Inference”. In: 2021 IEEE Inter-
national Symposium on High-Performance Computer
Architecture (HPCA). 2021, pp. 493–506.

[2] Yali Zhao et al. “SLA-Aware and Deadline Constrained
Profit Optimization for Cloud Resource Management in
Big Data Analytics-as-a-Service Platforms”. In: 2019
IEEE 12th International Conference on Cloud Comput-
ing (CLOUD). 2019, pp. 146–155.

[3] Yixin Bao, Yanghua Peng, and Chuan Wu. “Deep
Learning-based Job Placement in Distributed Ma-
chine Learning Clusters”. In: IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications. 2019,
pp. 505–513.

[4] Salah Zrigui et al. “Improving the performance of batch
schedulers using online job runtime classification”. In:
Journal of Parallel and Distributed Computing 164
(2022), pp. 83–95.

[5] Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. “Back-
filling using system-generated predictions rather than
user runtime estimates”. In: IEEE Transactions on Par-
allel and Distributed Systems 18.6 (2007), pp. 789–803.

[6] Rajath Kumar and Sathish Vadhiyar. “Prediction of
queue waiting times for metascheduling on parallel
batch systems”. In: Job Scheduling Strategies for Par-
allel Processing: 18th International Workshop, JSSPP
2014, Phoenix, AZ, USA, May 23, 2014. Revised Se-
lected Papers 18. Springer. 2015, pp. 108–128.

[7] Ju-Won Park, Min-Woo Kwon, and Taeyoung Hong.
“Queue congestion prediction for large-scale high per-
formance computing systems using a hidden Markov
model”. In: The Journal of Supercomputing 78.10
(2022), pp. 12202–12223.

[8] Nick Brown et al. “Predicting batch queue job wait
times for informed scheduling of urgent hpc workloads”.
In: arXiv preprint arXiv:2204.13543 (2022).

[9] Ali Ghodsi et al. “Dominant resource fairness: Fair
allocation of multiple resource types”. In: 8th USENIX
symposium on networked systems design and implemen-
tation (NSDI 11). 2011.

[10] Operator pattern. Last accessed, 18 October 2023. URL:
https://kubernetes.io/docs/concepts/extend-kubernetes/
operator/.

[11] Custom Resources Definitions. Last accessed, 18 Octo-
ber 2023. URL: kubernetes . io /docs /concepts /extend-
kubernetes/api-extension/custom-resources/.

[12] Prometheus. Last accessed, 18 October 2023. URL:
https://prometheus.io/.

[13] Volcano. Last accessed, 18 October 2023. URL: https:
//volcano.sh/en/docs/.

[14] Kubebuilder. Last accessed, 18 October 2023. URL:
https://book.kubebuilder.io/introduction.

[15] Google cluster-usage traces v3. Last accessed, 18 Oc-
tober 2023. URL: https : / /github .com/google /cluster-
data/blob/master/ClusterData2019.md.

[16] Han Xiao, Kashif Rasul, and Roland Vollgraf.
“Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms”. In: arXiv preprint
arXiv:1708.07747 (2017).

196


