Efficient Adaptive Batching of DNN Inference
Services for Improved Latency

Osama Khan*, Junyeol Yu', Yeonjae Kim', Euiseong Seof
*Dept. of AI System Engineering, Sungkyunkwan University, Suwon, Republic of Korea
Email: khan980@g.skku.edu
‘LDept. of Computer Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
Emails: {junyeol.yu, yeonjae.kim, euiseong} @skku.edu

Abstract—With the rising success of deep neural network
(DNN) applications, GPU servers are increasingly utilized to
provide DNN inference services. Batching, in which multiple
incoming requests are grouped together for simultaneous pro-
cessing, is a common practice for the DNN inference serving
systems to enhance GPU utilization and thus lower the service
cost. While batching enhances GPUs’ efficiency, it can extend
the end-to-end latency for each individual request. This delay is
especially noticeable when requests are infrequently incoming to
form a complete batch. On the other hand, when the request rate
is high, a consistently small batch size may not fully harness the
GPU’s capacity. Handling requests one by one might decrease
this latency but also raise energy consumption. Therefore, it’s
crucial to strike a balance between energy efficiency and latency,
optimizing the batch size to ensure timely processing without
compromising performance under varying request rates. Many
existing solutions aim to fully use user-set deadlines, which,
even though they maximize, can heighten perceived latency,
particularly in larger pipelines. In this paper, we introduce a
dynamic batching strategy tailored to adapt batch sizes in real-
time for varying request rates. Our method aims to balance
the time taken to assemble a batch and the time required to
execute it, ensuring efficient energy consumption and prompt
response times. By dynamically adjusting batch size relative to
the current request rate, we strive to ensure that the collection
duration for a batch coincides with its execution duration. This
will minimize the latency as much as possible while ensuring
we utilize the batching to provide an efficient solution. We built
our approach using Triton, a platform for AI model deployment
and execution. OQur evaluation with four different DNN models
shows that our technique achieved marginally close latency as the
batching deployed by the Triton inference server and improved
the energy efficiency by up to 5%.

Index Terms—inference, batching

I. INTRODUCTION

DNN inference applications are surging in popularity, lead-
ing to a heightened reliance on GPUs to meet the demands
of such services. These GPUs excel in handling vast parallel
operations, making them indispensable in inference applica-
tions. To harness their full potential in situations with multiple
service requests, the batching technique has been introduced.
By grouping multiple requests for simultaneous processing,
batching boosts GPU utilization and efficiency [1].

When using batching, the choice of batch size becomes
crucial in influencing both latency and the efficient use of
resources. For example, a large batch size during periods

979-8-3503-3094-6/24/$31.00 ©2024 IEEE

197

of low demand can lead to increased latency because the
server has to wait until a predefined number of requests
are accumulated. On the other hand, because a small batch
size underutilizes GPU’s capability during peak times with
high load, the reduced throughput from a small batch size
may significantly retard the response time. It might seem
advantageous to avoid the use of a predefined batch size
and to repeatedly process all accumulated requests whenever
the GPU is available. However, this approach diminishes the
servers’ energy efficiency, measured in requests per joule.
Without batching, the parallel processing advantages of GPUs
remain untapped. Consequently, adopting an adaptive strategy
that dynamically adjusts batch size according to the prevailing
request rate becomes essential for efficient inference services.

Several methods have been proposed to adapt batching for
inference tasks with different goals. These methods either
aim to maximize the throughput [1]-[3] or improve energy
efficiency [4], [5]. However, many of these methods tend to
fully utilize the allowable SLO (service-level objective) slack.
This can affect the user experience as most of these inference
services are interconnected and if each service consistently
operates at the upper end of its SLO limit, the aggregate la-
tency can escalate significantly, adversely affecting the overall
latency experienced by the user. Moreover, certain approaches
necessitate layer-level profiling and optimization [1], [4],
which is unfeasible when preserving the model’s structural
integrity is crucial.

This paper presents an adaptive batching scheme aimed at
reducing latency while ensuring efficient batching. In contrast
to existing research, our approach offers a model-agnostic
solution that adjusts batch sizes without additional overhead,
prioritizing energy efficiency and user experience. Initially, we
focus on separating the process of computing the optimal batch
size for the incoming request rate from the actual dispatching
process, i.e., combining the requests into a particular batch and
sending it to the model. By separating these two processes, our
goal is to eliminate the potential for computational delays in
request handling caused by frequent calculations of batch size.

Consequently, our approach is made up of two parts:
BatchMonitor and BatchDispatcher. The BatchMontior phase
constantly assesses the rate of incoming requests and de-
termines the optimal batch size that aligns with this rate.

ICOIN 2024

Once this batch size is found for the given request rate, it is
passed to the BatchDispatcher, which combines the requests
into this particular batch size. Therefore, it is the job of the
BatchMonitor to find the batch size for the given request rate
and pass it to the BatchDispatcher.

BatchMonitor selects the batch size that will meet the
throughput demand of the current request rate. For example,
at a request rate of five requests per second, it identifies a
batch size with a throughput of five requests per second. This
ensures that a batch’s processing time matches that particular
batch’s formation time at a given request rate. In other words,
a batch size with a throughput below five requests per second
will make the execution time of the batch a bottleneck, as the
number of requests that can be formed becomes more than
the number of requests that is processed by the current batch
size. Conversely, a batch size exceeding this throughput risk
increases the queueing time of the request as the time to create
that batch also increases. Therefore, by equating the request
rate with batch processing speed, we aim to eliminate the
latency from long queueing time under a small request rate and
long compute time under a heavy request rate. Finally, once the
optimal size is discerned, it’s relayed to the BatchDispatcher,
which then collates requests into this preferred batch size.

We integrated our method with NVIDIA’s Triton Server,
an Al model-serving platform compatible with various deep
learning and machine learning frameworks. For our assess-
ment, we employed Triton’s standard procedures. Specifically,
Triton offers two primary methods: one where the maximum
possible batch size is selected under the timing constraint and
another where the requests are served as they arrive.

The remainder of the paper is as follows. Section II presents
the background and motivation. Section III proposes our
approach, and Section IV evaluates it. Section V introduces
the related work, and Section VI concludes our research.

II. BACKGROUND AND MOTIVATION

In batching, multiple inputs are combined together into a
single input. The batched input has a larger dimension than the
single input, providing more opportunities for GPUs to utilize
their large number of computational cores simultaneously. As
a result, batching helps increase the overall throughput [6] or
energy efficiency of these GPUs [5].

However, the benefits of batching come at the expense
of increased latency [2]. The trade-off between the benefits
obtained from batching and the increased latency is controlled
by the batch size we aim to form. In the case of inference
applications, if the rate of incoming requests to these applica-
tions is slow, it will take more time to form a large batch size.
On the other hand, if the rate is high and the batch size we
selected is small, we will lose the opportunity to fully utilize
the GPUs.

Therefore, instead of directly selecting a batch size, given
the time constraint on the latency of the request, a timeout
is usually set when creating the batch size [1]-[3], [5]. The
timeout puts an upper bound on the wait time so the system
can form the maximum possible batch size. The timeout is

(1) Compute time < Queueing time
1 1
Q 1
1 1 |
c T 1T

Latency

(2) Compute time = Queueing time
1 1
 f 1
1 1
> C I 1

Request rate
(3) Compute time > Queueing time

o p— +—
() @ @) c I I
I I 1

Fig. 1: Latency as a function of request rate for batch size
N, highlighting three distinct cases based on the relationship
between the queueing time (Q) and compute time (C).

usually set according to the SLO constraint of the inference
application, such that after executing the batch, none of the
requests in that batch violate the SLO.

While having a timeout ensures that we process the max-
imum possible batch size under the SLO for a given request
rate, utilizing the available slack time created by a longer
SLO than the execution time increases the perceived latency in
inference applications, where they are part of large intercon-
nected services. In these situations, if every inference service
tends to utilize its SLO, the final cumulative latency increases.
Furthermore, this negatively affects the user experience. There-
fore, it is essential to create a batch based on the incoming
request rate that will minimize the latency as much as possible
while utilizing the benefits of batching.

III. OUR APPROACH

Batching plays a pivotal role in optimizing GPU utilization.
However, it’s essential to modulate the batch size based on
the influx of requests at any given moment. For instance,
smaller batch sizes are more favorable during periods of low
request rates. Choosing larger batch sizes in such situations
could inadvertently increase the average latency for early-
arriving requests. On the other hand, larger batch sizes should
be employed during times of high request rates to enhance the
system’s throughput and maximize resource utilization.

We introduce an adaptive scheduling framework that allows
efficient batching while keeping the latency as small as pos-
sible. Our approach is divided into two distinct components:
BatchMonitor and the BatchDispatcher. BatchMonitor contin-
uously assesses the rate of incoming requests. After computing
the request rate, it then determines an optimal batch size,
which will keep the latency to a minimum at the current
request rate. BatchMonitor then passes this information to the
BatchDispatcher which runs independently of the BatchMon-
itor. BatchDispatcher initially assembles a batch of size one.
However, once notified of the recommended batch size from
BatchMonitor, it swiftly adjusts, forming batches that align
with the suggested size for processing.

198

A. Computation of Preferred Batch Size

To compute the optimal batch size for a given request rate,
we need first to understand the relation between the batch size
and the latency under different request rates. Figure 1 shows
the situation where forming a batch size of N creates three
different situations.

Compute time is less than queueing time. This suggests
that our batch size is excessively large. With a slow incoming
requests, we are left waiting to accumulate enough to form
the desired batch, leading to prolonged queueing times.
Compute time equals queueing time. The batch of size N is
processed in the time it takes to assemble it. As soon as we
have a full batch ready, it’s processed immediately, achieving
the minimum latency.

Compute time surpasses queueing time. In this case, al-
though requests pour in quickly, forming batches swiftly, the
compute time remains unchanged. This means requests often
have to wait their turn while the current batch is processed,
turning compute time into a bottleneck.

When expressed mathematically, this relationship can be
depicted as follows: Let’s denote the batch size as B and the
compute time for a batch of size B as Tj. The appropriate
request rate for the batch size B, represented as Rj, is
determined when the time taken for B number of requests
to arrive matches with 7. If the queueing time for the batch
size B is given as (), and if the requests come in slowly
such that @, > T}, then the minimum latency is 73, while the
maximum latency equals 73+ Q). Conversely, if requests come
in swiftly and @, < T}, the minimum latency is calculated as
T, + a, and the maximum latency is T} + @, + a. Here, a
represents the additional waiting time due to requests arriving
during the computation of the preceding batch, causing a to
gradually increase as time progresses. In the unique situation
where @, = Tp, both minimum and maximum latency equate
to T, + Qp. In all these situations, since 73, the computing
time for batch size B, remains consistent, it’s evident that the
average latency is minimized when @, aligns with T}. Based
on this, the correlation between the time taken for B requests
to be received and the compute time of batch size B can be
expressed as

Ry < B/T;. (1)

Therefore, for a certain request rate, we will choose the
batch size that will make equation 1 true.

Algorithm 1 shows how BatchMonitor selects the preferred
batch size and updates the variable inside the BatchDispatcher.
The algorithm starts by initializing the request count to zero,
the window to one second, and by loading the regression
model to predict the execution time for a given batch size
(line 1-4). We select a linear regression model to predict
the time for a given batch size as the batch execution time
shows a linear relation with the increasing size of batch [5].
The BatchMonitor then starts a while loop and continuously
updates the variable for the preferred batch size. A new loop
is created during which we go through all the batch sizes
(line 7-15). Once the batch size that satisfies the equation

Algorithm 1 Computing Preferred Batch Size

1: request_count <— 0
2.t 1

3: pbs 1

4: regression

5: while True do

6 batch_size <+ 2

7: while batch_size < max_batch_size do
8

9

> Time window in seconds
> Preferred Batch Size
> Regression model

batch_time < regression.predict(batch_size)
throughput < batch_size + batch_time

10: if request_count < throughput then

11: pbs < batch_size

12: break

13: end if

14: batch_size < batch_size + 1

15: end while

16: if batch_size == max_batch_size + 1 then
17: pbs < batch_size — 1

18: end if

19: request_count <— 0

20: sleep(t)
21: end while

1 is found, the BatchMonitor breaks the loop and after
updating the preferred batch size variable, goes to sleep for
the remaining time window. The variable for request count
is updated independently of the BatchMonitor, so even if the
BatchMonitor goes to sleep, it does not affect the request count
variable.

IV. EVALUATION

We integrated our approach with NVIDIA’s Triton Server,
an Al model-serving platform supporting a wide array of deep
learning frameworks. We further enhanced Triton by intro-
ducing BatchMonitor and BatchDispatcher components. For
the comparison, we choose four different models: BertBase,
VGG19, ResNet50, and ResNet101.

We compared our method with two different approaches.
The first approach creates a max batch size possible under the
given deadline. Since this method keeps waiting until the edge,
we create the largest batch size. However, the latency of this
approach is the highest, as this method keeps waiting until the
deadline is about to be crossed. The second approach, ad-hoc
batching, is the opposite of the first. In this approach, we serve
the requests as they come. If multiple request arrives at the
same time, we create a batch and serve them. This approach
ensures a minimum latency, but the energy efficiency is small.
Figure 2 illustrates latency and energy efficiency distinctions,
measured in "Requests per joule,” between our approach, Ad-
hoc batching, and the maximum batch size technique. For this
evaluation, we use synthetic data. The data has the request rate
range from one all the way up to 240 mimicking the real-world
environment.

The result shows that our approach’s latencies for Bert-Base,
VGG19, ResNet50, and ResNetl01 were 45.78ms, 6.11ms,

199

8 200
©
-4
-+t
0
3 100 1
o
Q
-4
0 A T T T T T T T
0 50 100 150 200 250 300
Time (sec)
(a) Time Series Data
g 200 B Max Batch Size - Our Approach
e B Ad-hoc Batching
>
Q
C
]
3100
9]
[)]
o
$
<
Bert-Base VGG19 ResNet50 ResNetl01l
Models
(b) Latency
) 10 mmm Max Batch Size
= mm Ad-hoc Batching
o m=m Our Approach
5]
o
+ 0.5
[
=]
o
[0}
4

0.0
VGG19 ResNet50 ResNetlOl

Models

Bert-Base

(c) Energy

Fig. 2: (a) Request rate over a span of 300 seconds. (b) Average
latency for different DNN models using three batching tech-
niques: Max Batch Size, Ad-hoc Batching, and our approach.
(c) Energy efficiency, measured as requests per joule

7.29ms, and 9.67ms, outpacing the max batch size technique
by 14 times. Meanwhile, energy efficiency under our approach
ranged from 0.46 to 0.97, offering a 5% edge over Ad-hoc
batching. Unlike creating the maximum batch size possible,
our approach’s dynamic batch size adjustments optimize both
speed and energy, underscoring its superior system efficiency.

V. RELATED WORK

Batching is a widely used technique to leverage the parallel
computational prowess of GPUs for inference tasks. Clip-
per introduced an adaptive approach, adjusting batch sizes
based on SLO breaches, but struggles with varying request
rates [2]. Mark and LazyBatching have their own methods
to optimize GPU efficiency; the former sets strict rules on
response and waiting times, while the latter operates at the
layer-level, though it faces challenges with certain model
types like RNNs [1], [3]. On serverless platforms, BATCH
employs adaptive batching to decrease the instances needed for
multiple requests by modeling request rates and corresponding
latencies [7]. BatchDVFS and EAIS target energy efficiency in
different ways: the former balances power consumption with
batch size and GPU frequency, while the latter uses regression

models to optimize energy efficiency within SLO bounds,
though the latter’s method can be time-intensive [5], [6].
Despite these techniques successfully optimizing throughput
or energy, they often use up the entire slack of the SLO. This
can raise overall response times when these services are part of
a pipeline, impacting user experience. Contrarily, our approach
offers a model-agnostic, simple, and efficient way to adapt
batch sizes in alignment with the request rate, bypassing the
complexities of traditional methods.

VI. CONCLUSION

Batching is an important technique to utilize the GPU poten-
tial and increase energy efficiency. However, the fluctuations
in inference request rates introduce a trade-off between the
benefits that can be gained from batching and the latency.
While utilizing the slack time fully to increase the batch size
ensures a large batch size, it affects the latency, especially
in cases where the inference services are chained to each
other. Therefore, in these situations, It is essential to reduce
the overall latency as much as possible for a smoother user
experience. In this paper, we develop an adaptive batching
that allows us to create a batch size depending on the request
rate. Our key motivation is that for every request rate, there
exists a batch size that results in minimum latency. Choosing
this batch size can ensure that we meet the minimum latency
while also utilizing the benefits of batching. Our evaluation
with four different DNN models shows that our technique
achieved almost similar latency as the Ad-hoc batching and
improved the energy efficiency by up to 5%.

ACKNOWLEDGEMENT

This research was supported by the MSIT (Ministry of Sci-
ence and ICT), Korea, under the ITRC (Information Technol-
ogy Research Center) support program (IITP-2023-RS-2023-
00258649) supervised by the IITP (Institute for Information
& Communications Technology Planning & Evaluation).

REFERENCES

[1] Y. Choi, Y. Kim, and M. Rhu, “Lazy batching: An SLA-aware batching

system for cloud machine learning inference,” in 2021 IEEE International

Symposium on High-Performance Computer Architecture (HPCA). 1EEE,

2021, pp. 493-506.

D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and

1. Stoica, “Clipper: A Low-Latency online prediction serving system,” in

14th USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI 17), 2017, pp. 613-627.

[3] C.Zhang, M. Yu, W. Wang, and F. Yan, “MArk: Exploiting cloud services

for Cost-Effective,SLO-Aware machine learning inference serving,” in

2019 USENIX Annual Technical Conference (USENIX ATC 19), 2019,

pp. 1049-1062.

C. Yao, W. Liu, Z. Liu, L. Yan, S. Hu, and W. Tang, “Eali: Energy-aware

layer-level scheduling for convolutional neural network inference services

on gpus,” Neurocomputing, vol. 507, pp. 265-281, 2022.

[5] C. Yao, W. Liu, W. Tang, and S. Hu, “Eais: Energy-aware adaptive
scheduling for cnn inference on high-performance gpus,” Future Gen-
eration Computer Systems, vol. 130, pp. 253-268, 2022.

[6] S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “Coordinated batching
and dvfs for dnn inference on gpu accelerators,” IEEE transactions on
parallel and distributed systems, vol. 33, no. 10, pp. 2496-2508, 2022.

[7]1 A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: Machine learning in-
ference serving on serverless platforms with adaptive batching,” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2020, pp. 1-15.

[2

[

[4

—

200

