
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

Analysis of Byzantine Fault Tolerant Consensus
Algorithms

*Note: Sub-titles are not captured in Xplore and should not be used

Mingyu Jo
School of Computer Science and

Engineering
Chung-Ang University

Korea
mgjo@cslab.cau.ac.kr

Donghyeon Kim
School of Computer Science and

Engineering
Chung-Ang University

Korea
dhkim@cslab.cau.ac.kr

Sangoh Park
School of Computer Science and

Engineering
Chung-Ang University

Korea
sopark@cau.ac.kr

Abstract—Maintaining data consistency in distributed

computing is essential to maintain system reliability. To this end,

many consensus techniques that can maintain data consistency

even if a failure occurs are being studied, and research is being

conducted on consensus techniques for Byzantine failures that

can occur in unreliable public networks. In this paper, we

introduce Byzantine fault tolerance consensus techniques:

Practical Byzantine Fault Tolerance, High performance and

Scalable Byzantine Fault Tolerance, and Zyzzyva. And we

evaluate the performance of them. Afterward, directions for

future research are presented.

Keywords—byzantine fault tolerance, consensus algorithm,

distributed system

I. INTRODUCTION

In distributed computing, fault tolerance is essential to
maintain data consistency. Ceph[1], a distributed storage
platform, uses a fault-tolerant consensus algorithm called
Paxos[2] to agree on management data between monitors.
However, the Paxos algorithm can only be used in places
where reliability is guaranteed, such as networks within data
centers. Data reliability and consistency cannot be guaranteed
if used in a public network environment where reliability
cannot be guaranteed.

To maintain consistency even in unreliable networks,
Byzantine fault-tolerant consensus algorithms were
designed[3]. Data consistency between anonymous nodes in a
wide area network can be maintained through these algorithms,
and distributed ledger systems such as Bitcoin and Ethereum
can be built[4].

In this paper, we describe the Byzantine fault-tolerant
consensus algorithms in Chapter 2 and analyze its
performance evaluation results in Chapter 3. Chapter 4
presents research directions and concludes through the
performance evaluation results.

II. BYZANTINE FAULT TOLERANT TECHNIQUES

A. Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance(PBFT)[5] is a
consensus technique that performs consensus through
exchanging messages with consensus nodes. It has 3 stages for
processing a request of a client: PrePrepare, Prepare, and
Commit stages.

PBFT is divided into one primary node and the remaining
consensus node. A client sends a signed request to the primary
to request a transaction on the network. Upon receiving a
request message from the client, the primary node generates
Pre-Prepare message with its unique sequence number and

broadcasts the message with a sign by the primary node.
Backup nodes that have received the Pre-Prepare message
verify the message. Backup nodes that determine the message
are correct to proceed to the next stage, the Prepare stage. A
node in the Prepare stage broadcasts a Prepare message.
Nodes that have received 2f+1 Prepare messages enter the
Commit stage. The nodes in the Commit stage broadcast a
Commit message and the nodes that have received 2f+1
correct Commit messages to execute the client's request and
deliver the execution result. When the client receives f+1
correct messages, it determines that the request is normally
reflected in the network.

B. High performance and Scalable Byzantine Fault

Tolerance

High performance and Scalable Byzantine Fault Tolerance
(HSBFT)[6] uses a method in which the leader node collects
and broadcasts Prepare messages or Commit messages
through the Prepare-Collect and Commit-Collect stages to
reduce the message complexity of PBFT. Therefore, the
complexity of HSBFT is O(n).

Figure 1 Practical Byzantine Fault Tolerance

Figure 2 High Scalable Byzantine Fault Tolerance

205979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

For this, Primary is selected from among candidate nodes
with large network bandwidth. In addition, the View Change
protocol was improved to dynamically add/delete network
nodes that were limited and static in PBFT.

However, since a centralized node called NST Center was
introduced for access to new nodes and requests from clients,
it takes a contradictory structure of centralization for
decentralization and causes a lot of message load on the NST
Center. In addition, since there are two more steps than the
existing PBFT, the consensus speed may be slower than that
of the PBFT when the number of nodes is small.

C. Zyzzyva

Most of the Byzantine fault-tolerant consensus algorithms
assume that the client can be trusted, and Zyzzyva[7] uses this
assumption by checking the consistency of the consensus
cluster for the client. This is the technique that allows the
fastest agreement in an environment without obstacles.

When a client receives a request, the primary node assigns
a sequence number and broadcasts the OrderReq message to
other nodes. The node that received the OrderReq message

executes the request and delivers a SpecResponse message
containing the execution results to the client. If the client
receives 3f+1 SpecResponse messages, it is determined that
the cluster is maintaining consistency. If 2f+1 to 3f
SpecResponses are received, it is determined that a failure has
occurred and steps are taken to restore the consistency of the
cluster. A Commit message created with the received
information is delivered to all nodes. The nodes that receive
this forward the LocalCommit message to the client so that the
agreement can be completed.

In Zyzzyva, the client must check that all nodes in the
cluster have executed requests in a consistent order, but this is
not possible in existing consensus algorithms such as PBFT.
Therefore, Zyzzyva adds history to the message to enable
verification of the order.

D. SAZyzz

Due to Zyzzyva's safety violations, SAZyzz[8] was
proposed. SAZyzz not only solved Zyzzyva's safety violation,
but also introduced a tree-based communication technique to
reduce the number of messages needed to reach consensus and
to implement consensus steps such as Fast Path Simple Mode,
Fast Path Scalable Mode, Slow Path Simple Mode, and Slow
Path Scalable Mode which are not present in Zyzzyva. So
scalability, safety, and liveness were guaranteed. In addition,
the cost of encryption was reduced by applying the latest
encryption technique, a multi-party signature scheme.

III. PERFORMANCE EVALUATION

In this paper, PBFT, HSBFT, and Zyzzyva were
implemented and a performance evaluation was performed.
The simulation environment consists of an Intel(R) Xeon(R)
Silver 4210 CPU @ 2.20GHz CPU and 128GB of DDR4
RAM. We measured the consensus processing times of
Zyzzyva, HSBFT, and PBFT with one client node and four
consensus nodes in a LAN environment.

For additional comparison, a comparison is also
performed with the Paxos algorithm. Paxos is a Crash Fault
Tolerant consensus algorithm that can tolerate failures due to
node suspension, and the leader node transmits the content to

be agreed upon to general nodes and collects it, repeating the
process twice to achieve consensus.

[Figure3] shows the performance ratio of Paxos, HSBFT
and PBFT times based on Zyzzyva’s processing time.
Zyzzyva showed the fastest results because it required the
fewest steps from client request to response. In the case of
HSBFT, it is a technique to improve node scalability by
reducing message complexity according to the number of
nodes in PBFT, but when the number of nodes is small, the
Collect steps of Prepare and Commit are added, so it showed
lower performance than PBFT.

Except for Zyzzyva, PBFT and HSBFT showed lower
performance compared to Paxos, a Crash Fault Tolerant
consensus algorithm. This appears to be due to the difference
in the number of messages and the signature work to tolerate
the Byzantine Fault..

IV. CONCLUSION

In this paper, we introduced the Byzantine fault tolerance
algorithms PBFT, HSBFT, and Zyzzyva among the consensus
algorithms for maintaining data consistency in a distributed
computing environment. PBFT maintains data consistency
through broadcasting between nodes. Because broadcast costs
increase, in order to reduce the number of broadcasts, HSBFT
reduced the message cost by adding a step to synthesize
broadcast messages. Zyzzyva reduces the cost of consensus
and maintains consistency by having trusted clients check the
consistency of consensus clusters.

 We performed performance evaluations on them.
Zyzzyva, which uses the assumption that it is a trustworthy
client, performed the best, but since it is difficult to guarantee
the reliability of the client virtually, research on ways to
complement this is necessary.

ACKNOWLEDGMENT (Heading 5)

This research was supported by Korea Institute for
Advancement of Technology(KIAT) grant funded by the
Korea Government(MOTIE)

(P0020632, HRD Program for Industrial Innovation)

REFERENCES This research was supported by the MSIT(Ministry of Science and
ICT), Korea, under the ITRC(Information Technology Research Center)
support program(IITP-2023-2018-0-01799) supervised by the IITP(Institute
for Information & communications Technology Planning & Evaluation)

Figure 3 Result of performance evaluation.

206

[1] "Ceph." https://ceph.io/en/

[2] L. Lamport, "Paxos made simple," ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001), pp.
51-58, 2001.

[3] L. Lamport, R. Shostak, and M. Pease, "The Byzantine generals
problem," in Concurrency: the works of leslie lamport, 2019, pp. 203-
226.

[4] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system,"
Decentralized business review, 2008.

[5] M. Castro and B. Liskov, "Practical byzantine fault tolerance," in OsDI,
1999, vol. 99, no. 1999, pp. 173-186.

[6] Y. Jiang and Z. Lian, "High performance and scalable byzantine fault
tolerance," in 2019 IEEE 3rd information technology, networking,
electronic and automation control conference (ITNEC), 2019: IEEE,
pp. 1195-1202.

[7] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, "Zyzzyva:
Speculative byzantine fault tolerance," ACM Transactions on
Computer Systems (TOCS), vol. 27, no. 4, pp. 1-39, 2010.

[8] N. Sohrabi, Z. Tari, G. Voron, V. Gramoli, and Q. Fu, "SAZyzz:
Scaling AZyzzyva to Meet Blockchain Requirements," IEEE
Transactions on Services Computing, vol. 16, no. 3, pp. 2139-2152,
2023, doi: 10.1109/TSC.2022.3214976.

207

