

Salinity Prediction Of Raw Water Using Deep
Learning Based Time Series Model

Duc-Tam Huynh

University of Information Technology
Viet Nam National University Ho Chi Minh City

Ho Chi Minh City, Vietnam

huynhductam96@gmail.com

Trong-Hop Do

University of Information Technology
Viet Nam National University Ho Chi Minh City

Ho Chi Minh City, Vietnam

hopdt@uit.edu.vn

Abstract—Water is a precious and indispensable resource

for human life. In recent years, the issue of water pollution and

scarcity has attracted increasing attention from the

international community. In this context, monitoring and

forecasting water quality is an urgent requirement to ensure

safe and clean water for the community. In the field of water

production and supply, water salinity is an important factor

affecting the water treatment process. According to QCVN 01-

1:2018/BYT, the maximum allowable salinity of drinking water

is 250 mg/L. Salinity varies seasonally and over time, and

forecasting surface water salinity for water treatment is a

challenge. To meet this need, the use of time series forecasting

models has become increasingly important. This paper proposes

appropriate machine learning models for forecasting water

salinity. Our method learns the trends and patterns in river

salinity data using statistical and machine learning techniques

to build time series forecasting models. Also, we compared

performance of using one-variable data with three-variable

data, and explain how the size of window affects model

performance, and impacts of forecast period as well. We

evaluated our method on a 6-year dataset of river salinity data.

The results illustrate that our selected models can forecast river

salinity with a high performance. Our method can be employed

to a wide range of water supply systems to improve the

effectiveness of procedures for treating water and ensure the

safety and sustainability of water resources.

Keywords—water salinity, machine learning, deep learning,

time series.

I. INTRODUCTION

Water is a vital resource for human existence and
development. Ensuring safe and clean water is essential for
protecting public health and improving the quality of life.
Therefore, research and forecasting of raw water salinity
before treatment is extremely important to ensure the efficient
and sustainable use of water resources.

Challenges of pollution and climate change have
significantly impacted water quality and salinity in water
production areas. By building an accurate forecasting model,
predicting the salinity of raw water before treatment could
help to make appropriate decisions and treatment plans to
minimize the impact of salinity on water supply systems and
treatment processes.

Building time series models has challenges of determining
the window size, forecast period, and the number of features
used. In this research, transitional data were generated from
raw data based on window size and forecast period to
determine whether these factors affect the performance of
models. In addition, the correlation between the quantity of
characteristics and model performance is clarified. We also
conduct comparison of state-of-the-art models (including
ANNs, ARIMA, CNNs, GRU, LSTM, and TCN) for time

series forecasting and selected appropriate models for certain
contexts. These achievements could support to make science-
based predictions, which can improve the efficiency and
reliability of water resource management.

This study contributes to comparison of different models'
performance on river salinity data, considering the number of
variables. Additionally, we evaluate these models based on
window size as well as forecast period.

II. RELATED WORK

A. ARIMA

ARIMA is widely used for forecasting and modeling time
series. The basic formula of the ARIMA model is represented
as a set of three parameters (p, d, q). Value of d can be
determined by the Augmented Dickey-Fuller (ADF). If the p-
value is greater than the significance level (typically 0.05),
then the time series needs to be integrated further until it
becomes weakly stationary (has a lower p-value) [1]. The
partial auto-correlation function (PACF) can be employed to
determine the value of p. The significant lag on the PACF plot
often determines the value of p. If it crosses the first lower
level on the horizontal line, the value of p is typically equal to
that position. To determine the value of q, the ACF plots can
be used. The significant lag on the ACF plot often determines
the value of q. If it crosses the first lower level on the
horizontal line, the value of q is typically equal to that position
[2].

B. Artificial Neural Networks

Artificial neural networks are composed of linked neurons,
mirroring the structure of biological neural networks. ANNs
comprise three layers, including one input layer, one output
layer, and minimum one concealed layer.

Traditional neural networks are trained using a process
called supervised learning. A collection of input-output pairs
is fed into the network. The network then learns to associate
the inputs with the outputs. To accomplish this, the
connections' weights among neurons undergo adjustments.
These adjustments rely on an optimization algorithm to
modify the weights.

The weights are adjusted based on the error using a method
called gradient descent, which calculates concerning its
weights and then modifies these weights to reduce the errors.
This procedure is iterated multiple times until the weights of
the neural network reach convergence. A neural network's
training is basically an optimization issue. After the training
process, providing the network with a dataset that was not
used in the training process as input, and the network will give
you a predicted output [3].

208979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

C. Convolutional Neural Networks

The model (CNNs) is primarily applied for computer
vision. The model’s applications are image classification,
object detection, and segmentation issue. They can also be
applied in recommender systems, natural language
processing, and time series. An example a CNN regression
architecture as illustrated in Fig. 1.

Fig. 1. A schematic representation of the Conv1D architecture [4] .

According to output layer for classification issue, the
number of output units depends on the quantity of categories.
For neural networks used for regression, there is one output
[5].

D. Long Short-Term Memory

LSTM is able to learn long-term dependencies. The Fig. 2
depicts the alterations implemented on the concealed at time
step t. These equations below represent an LSTM:

𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ℎ𝑡𝑡−1 + 𝑈𝑈𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑉𝑉𝑖𝑖𝑐𝑐𝑡𝑡−1) (1)

𝑓𝑓 = 𝜎𝜎(𝑊𝑊𝑓𝑓ℎ𝑡𝑡−1 + 𝑈𝑈𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑉𝑉𝑓𝑓𝑐𝑐𝑡𝑡−1) (2)

𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ℎ𝑡𝑡−1 + 𝑈𝑈𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑉𝑉𝑜𝑜𝑐𝑐𝑡𝑡−1) (3)

𝑔𝑔 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑊𝑊𝑔𝑔 ℎ𝑡𝑡−1 + 𝑈𝑈𝑔𝑔𝑥𝑥𝑡𝑡 (4)

𝑐𝑐𝑡𝑡 = (𝑓𝑓 ∗ 𝑐𝑐𝑡𝑡−1) + (𝑔𝑔 ∗ 𝑖𝑖) (5)

ℎ𝑡𝑡 = tanh(𝑐𝑐𝑡𝑡) ∗ 𝑜𝑜 (6)
In which, i, f, and o interpret for the input gate, forget gate,

and output gate, respectively. The calculations are performed
employing identical equations, albeit utilizing distinct sets of
matrices of parameters Wi, Ui, Wf, Uf, and W0, U0.

The forget gate is used to calculate the degree of the
previous state ht-1 can pass through. The input gate is
employed to determine the degree of new state calculated for
the existing input xt can pass through, and the output gate
determines the degree, which revealed the internal hidden
state to the next layer. Calculating of the state g relies on both
the input xt and the preceding state ht-1.

Fig. 2. A visual depiction of LSTM cell [5].

Derived from i, f, o, and g, the calculation of state ct at time
t follows a specific procedure: it involves the multiplication of
the cell state ct-1 at time (t-1) by the forget gate f, along with
the product of the state g and the input gate i. Fundamentally,
this process represents a mechanism for amalgamating prior
memory and incoming information; specifically, adjusting the
forget gate to 0 disengages the retention of former memory,
while setting the input gate to 0 excludes the integration of the

newly computed state. Subsequently, the computation of the
hidden state ht at time t is contingent upon the cell state ct at
time t, guided by the output gate o [5].

E. Gated Recurrent Units

The Gated Recurrent Units (GRU) represent a variation of
the LSTM model, preserving the capacity to mitigate the
vanishing gradient issue akin to LSTM. However, GRU
exhibits a comparatively simpler internal architecture, leading
to expedited training due to its reduced computational
demands for updating the hidden state. A GRU cell includes
the update gate as z and the reset gate as r. The proportion of
the previous memory to preserve can be determined by update
gate, while the reset gate is used to determine the method for
integrating the new input with the existing memory.

The GRU cell determines how to compute the state ht at
time t from the hidden state ht-1 following set of equations:

𝑧𝑧 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ℎ𝑡𝑡−1 + 𝑈𝑈𝑧𝑧𝑥𝑥𝑡𝑡) (7)

𝑟𝑟 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ℎ𝑡𝑡−1 + 𝑈𝑈𝑟𝑟𝑥𝑥𝑡𝑡) (8)

𝑐𝑐 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐 (ℎ𝑡𝑡−1 ∗ 𝑟𝑟) + 𝑈𝑈𝑐𝑐𝑥𝑥𝑡𝑡) (9)

ℎ𝑡𝑡 = (𝑧𝑧 ∗ 𝑐𝑐) + ((1 − 𝑧𝑧) ∗ ℎ𝑡𝑡−1) (10)
The computations for the update gate z and reset gate r

involve a fusion of the prior hidden state ht-1 and the present
input xt. The cell state c is determined through a functional
relationship between the output of the reset gate r and the input
xt. Ultimately, the derivation of the hidden state ht at time t
hinges upon the relationship between the cell state c and the
preceding hidden state ht-1. The parameters Wz, Uz, Wr, Ur, and
Wc, Uc are learned during training [5].

F. Temporal Convolutional Networks

Temporal convolutional networks can be described by a
set of simple architectures, which is shown in Fig. 3. The
distinct features of TCNs is that no information "leaks" from
the future into the past. In addition, the structure is capable of
receiving input sequences of varying lengths and mapping
them into output sequences of equivalent lengths, just like an
RNN.

TCNs include dilated convolutions and residual
connections. A residual block is represented as (11).

o = Activation(x + F(x)) (11)

Fig. 3. Structure of the Temporal Convolutional Networks. (a) A dilated

causal convolution with dilation factors d = 1; 2; 4 and filter size k = 3. (b)

TCN residual block

In TCNs, the widths of input may differ output. To address
the mismatch between input and output widths, the authors use
1x1 convolution to guarantee that the element-wise addition

⊕ receives tensors of the same size [6].

III. DATA

Experimental data: water quality data of the Saigon River,
which are monitored at the Hoa Phu pumping station, belongs

209

to Tan Hiep Water Plant, where position shown in Fig. 4. Data
are mean values of each day, collected over a period of 6 years
(from January 1, 2017 to December 31, 2022). It contains 11
features.

Fig. 4. Location of Hoa Phu pumping station.

IV. EXPERIMENT AND RESULT

A. Experimental Procedure

The data are experienced cleaning process, which is to
remove outliers, which values greater than and less than 3SD
(standard deviation) [7]. Missing data will be replaced with
linear interpolation values as (12). Let's consider that the x-
data points are arranged in increasing order [8].

ŷ(x) = 𝑦𝑦𝑖𝑖 + (𝑦𝑦𝑖𝑖+1−𝑦𝑦𝑖𝑖)(𝑥𝑥−𝑥𝑥𝑖𝑖)
(𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖) (12)

Where: ŷ(x) is the interpolated value at x, yi and yi+1 are the
known values at xi and xi+1, x is the point at which we want to
interpolate

 The next process is feature selection. The dataframe has
11 features, after calculating Pearson correlation coefficient of
these features to salinity as (13), the three features are selected,
including pH, electrical conductivity, and salinity, because the
Pearson correlation coefficient of those are higher than 0.50
and those parameters can be monitored by sensors instead of
manually tested in chemical laboratory of the water plant.

𝑟𝑟𝑋𝑋𝑋𝑋 = ∑(𝑋𝑋𝑖𝑖−𝑋̅𝑋)(𝑌𝑌𝑖𝑖−𝑌̅𝑌)
√∑(𝑋𝑋𝑖𝑖−𝑋̅𝑋)2 ∑(𝑌𝑌𝑖𝑖−𝑌̅𝑌)2 (13)

Where: Xi and Yi are the values of feature X and Y for the
i-th observation. 𝑋̅𝑋 and 𝑌̅𝑌 are the means of features X and Y,
respectively [9].

After selecting features, new datasets were generated from
clean dataset to clarify whether or not using three variables has
better performance than one variable, increasing window size
could improve model performance, and the longer the forecast
period, the higher level of error. To explore how window size,
the number of variables, and forecast period affect
performance of models, the period of time applied for window
size will be altered from 7 days to 15 days and 30 days, and
forecast period will be changed from 1 day to 3 days and 7
days, the number of variables varied as 1 variable and 3
variables. These generated 18 datasets with 9 three-variable
datasets and 9 one-variable datasets. For example, “Dataset
3var, 30-1” in Fig. 5 illustrates for data using three variables,
window size is 30 days, and forecast period is 1 day. The
research employed ANN, CNN, GRU, LSTM, TCN, TCN,
and ARIMA for training data. These models are trained on
one-variable and three-variable, excepting to the ARIMA
model is only trained on one-variable dataset. The matrix of
datasets and models need to be trained and tested in 99 running
times.

The datasets were divided into three subsets: training set -
60%, validating set - 20%, and test set – 20% of data [10]. The
workflow of the research is summarized in Fig. 5. To split
data, the split points in time were applied as the first 60% for
training, the next 20% for validating, and the rest 20% for
testing.

After splitting process, the data will be standardized as
follows (14) before training and testing.

 𝑧𝑧 = 𝑥𝑥−𝜇𝜇
𝜎𝜎 (14)

Where: z is the standardized value, x represents the original
data, μ represents the average of the dataset, σ represents the
standard deviation of the dataset [11].

B. Evaluation Metrics

We used two performance metrics: Mean Absolute Error
(MAE) and Mean Absolute Percentage Error (MAPE),
defined as follows:

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑|𝑥𝑥𝑖𝑖 − 𝑥̂𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1
 (15)

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100
𝑛𝑛 ∑

|𝑥𝑥𝑖𝑖 − 𝑥̂𝑥𝑖𝑖|
𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (16)

In which, xi is the actual salinity data, x̂i is the predicted
salinity data, and n represents the quantity of data points [12].

Fig. 5. The workflow of data processing.

210

C. Experimental Environment

The research had implemented on Window 10, used
Python programming language. Scripts were compiled on
Visual Studio Code. The computer configurations are 11th
Generation Intel® Core™ i5 Processor and Ram DDR4 8GB
2666Mhz.

D. Results and Discussion

D.1. Comparison by Forecast Priod

From the results of Fig.6, Fig. 7, Fig. 8, Fig. 12, Fig. 13,
and Fig. 14, the experiment intentionally fixed the window
size as 7 days, 15 days, and 30 days to compare performance
of models when increased forecast period. They indicate that
the MAE and MAPE error tend to increase as the forecast
period increases from 1 day to 3 days and 7 days, while the
window sizes were fixed as 7 days, 15 days, and 30 days. The
ARIMA model has a higher level of error than the other
models because it can only forecast well for stationary datasets
[13]. The best 1-day forecast model is CNN_1Var with an
MAE error of 1.40mg/L (MAPE error of 4.31%) with a
window size of 7 days. The GRU_1Var model has the lowest
MAE error (3.20 mg/L) of all the 3-day forecast models, but
GRU_1Var and CNN_1Var have the same level of error by
MAPE as 10.0% with a window size of 7 days. The
ANN_1Var model with a 7-day window size has the lowest
MAE error (5.38 mg/L) of all the 7-day forecast models, while
comparing by MAPE error, the LSTM_3Var has better
performance with MAPE error as 15.9% comparing to
ANN_1Var as 16.7% in the same window size of 7 days.
When comparing in different metrics, the best order
performance model may change, because the metrics
measuring certain aspects of the data or the random sampling
used [14]. The CNN_1Var model has Conv1D layers that are
able of extracting spatial features such as trends, peaks, or
variations in time series. This allows the model to learn
important short-term patterns in data, leading to better
forecasting performance [15]. The GRU_1Var outperform
other models in case short-term forecasting task because its
few parameters with simple structure [16, 17]. The
ANN_1Var models could provide comparable forecasting
results because data are relatively short and dependencies
between the data points are not complex [18].

D.2. Comparison by Window Size

As the results of Fig. 9, Fig. 10, Fig. 11, Fig. 15, Fig. 16,
and Fig. 17, the MAE error also tends to rise as the window
size increases from 7 days to 15 days and 30 days, while
forecast period was fixed as 1 day, 3 days, and 7 days. That
also happens when comparing by MAPE metric. It is notable
that increasing window size could improve performance of
models for longer forecast period according to models which
have buffer memory like GRU and LSTM. As Fig. 17 show
that using appropriate window size and multivariate facilitate
the LSTM_3Var to achieve the best performance with forecast
period as 7 days with MAPE 15.9%. For TCN model, dilated
convolution and residual block may enhance model
performance [6].

Fig. 6. MAE of models using window size as seven days, and forecast

period as one day, three days, and seven days.

Fig. 7. MAE of models using window size as 15 days, and forecast period

as one day, three days, and seven days.

Fig. 8. MAE of models using window size as 30 days, and forecast period

as one day, three days, and seven days.

Fig. 9. MAE of models using forecast period as 1 day, and window size as

one day, three days, and seven days.

Fig. 10. MAE of models using forecast period as 3 days, and window size

as one day, three days, and seven days.

211

D.3. Comparison by The Number of Variables

As the same window size and forecast period, increasing
the number of variable results in rise of error in both metrics.
This phenomenon is known as the "curse of dimensionality".
As the number of variables increases, the available data
becomes sparse in the high-dimensional space. This sparsity
can lead to difficulties in accurately estimating model
parameters, identifying meaningful patterns, and generalizing
well to unseen data [19].

Fig. 11. MAE of models using forecast period as 7 days, and window size

as one day, three days, and seven days.

Fig. 12. MAPE of models using window size as 7 days, and forecast period

as one day, three days, and seven days.

Fig. 13. MAPE of models using window size as 15 days, and forecast

period as one day, three days, and seven days.

Fig. 14. MAPE of models using window size as 30 days, and forecast

period as one day, three days, and seven days.

Fig. 15. MAPE of models using forecast period as 1 day, and window size

as one day, three days, and seven days.

Fig. 16. MAPE of models using forecast period as 3 days, and window size

as one day, three days, and seven days.

Fig. 17. MAPE of models using forecast period as 7 days, and window size

as one day, three days, and seven days.

Fig. 18. Actual values and predicted values of CNN_1Var model with

window size of as 7 days and forecast period as 1 day.

Fig. 19. Actual values and predicted values of CNN_1Var model with

window size as 7 days and forecast period as 3 days.

212

Fig. 20. Actual values and predicted values of CNN_1Var model with

window size as 7 days and forecast period as 7 days.

V. CONCLUSION AND FUTURE WORK

The study focuses on forecasting the salinity of untreated
water, a topic not previously explored in Tan Hiep Water
Plant. Extensive real-time data was employed for this purpose.
Sophisticated techniques in deep learning and machine
learning tailored for predicting time series were effectively put
into practice. The research involved testing and comparing the
models' effectiveness across diverse conditions.

In the near future, we integrate additional variables into the
model to enhance accuracy. Experimenting with advanced
deep learning models based on transformer architecture for
this forecasting problem. We also continue to build a real-time
forecasting system, research and improve a more general data
preprocessing algorithm, as well as inherit and develop
machine learning models to achieve better performance, in
order to lay the foundation for the development of higher-level
problems, with the ultimate goal of this development direction
being to build a real-time application that can help operators
quickly grasp the trend of salinity changes as quickly as
possible.

REFERENCES

[1] M. A. N. M. Asri, N. Zaini and M. F. A. Latip,

"Development of an LSTM-based Model for Energy

Consumption Prediction with Data Pre-analysis," 2021

11th IEEE International Conference on Control

System, Computing and Engineering (ICCSCE),

Penang, Malaysia, 2021.

[2] George E. P. Box, Gwilym M. Jenkins, Gregory C.

Reinsel, Greta M. Ljung, Time Series Analysis:

Forecasting and Control, Wiley, 2015.

[3] Perry Xiao, Artificial Intelligence Programming with

Python from Zero to Hero, John Wiley & Sons, Inc.,

2022.

[4] Mohd Imran Khan and Rajib Maity, "Hydrid Deep

Learning Approach for Multi-Step-Ahead Daily

Rainfall Prediction Using GCM Simulations," IEEE

Access, vol. 8, pp. 52774-52784, 2020.

[5] Amita Kapoor, Antonio Gulli, Sujit Pal, Deep Learning

with TensorFlow and Keras: Build and deploy

supervised, unsupervised, deep, and reinforcement

learning models, Packt Publishing, 2022.

[6] Shaojie Bai ,J. Zico Kolter, Vladlen Koltun, "An

Empirical Evaluation of Generic Convolutional and

Recurrent Networks for Sequence Modeling,"

arXiv:1803.01271v2, 2018.

[7] N. N. R. Ranga Suri , Narasimha Murty M and G.

Athithan, Outlier Detection: Techniques and

Applications, Springer: https://doi.org/10.1007/978-3-

030-05127-3, 2019.

[8] Qingkai Kong, Timmy Siauw, Alexandre Bayen,

Python Programming and Numerical Methods: A

Guide for Engineers and Scientist,

https://doi.org/10.1016/C2018-0-04165-1: Academic

Press, 2020.

[9] Robert S. Witte and John S. Witte, Statistics, Wiley,

2017.

[10] V. Roshan Joseph, "Optimal ratio for data splitting,"

Wiley, vol. 15, no. 4, pp. 531-538, 2022.

[11] Alice Zheng and Amanda Casari, Feature Engineering

for Machine Learning, O’Reilly , 2018.
[12] Zhiyong Cui, Ruimin Ke, Ziyuan Pu, Yinhai Wang,

"Stacked Bidirectional and Unidirectional LSTM

Recurrent Neural Network for Forecasting Network-

wide Traffic State with Missing Values,"

arXiv:2005.11627v1, 2020.

[13] Peter T Yamak, Li Yujian and Pius K Gadosey, "A

Comparison between ARIMA, LSTM, and GRU for

Time Series Forecasting," Computing and Artificial

Intelligence,

https://doi.org/10.1145/3377713.3377722, 2019.

[14] Max Kuhn and Kjell Johnson, Applied Predictive

Modeling, https://doi.org/10.1007/978-1-4614-6849-3:

Springer, 2013.

[15] Jun Zhang, Yongchuan Yu , Jianzhuo Yan and Jianhui

Chen, "Data-Driven Parameter Prediction of Water

Pumping Station," MDPI,

https://doi.org/10.3390/w15061128, 2023.

[16] Shuai Gao, Yuefei Huang, Shuo Zhang, Jingcheng

Han, Guangqian Wang, Meixin Zhang, Qingsheng Lin,

"Short-term runoff prediction with GRU and LSTM

networks without requiring time step optimization

during sample generation," Journal of Hydrology,

https://doi.org/10.1016/j.jhydrol.2020.125188, 2020.

[17] K.E. ArunKumar, Dinesh V. Kalaga, Ch. Mohan Sai

Kumar, Masahiro Kawaji, Timothy M. Brenza,

"Comparative analysis of Gated Recurrent Units

(GRU), long Short-Term memory (LSTM) cells,

autoregressive Integrated moving average (ARIMA),

seasonal autoregressive Integrated moving average

(SARIMA) for forecasting COVID-19 trends,"

Alexandria Engineering Journal, vol. 61, no. 10, pp.

7785-7603, 2022.

[18] He-Ren Lou, Xin Wang, Ya Gao and Qiang Zeng,

"Comparison of ARIMA model, DNN model and

LSTM model in predicting disease burden of

occupational pneumoconiosis in Tianjin, China," BMC

Public Health, https://doi.org/10.1186/s12889-022-

14642-3, 2022.

[19] Christopher M. Bishop, Pattern Recognition and

Machine Learning, Springer, 2006.

213

