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Abstract—Water is a precious and indispensable resource 

for human life. In recent years, the issue of water pollution and 

scarcity has attracted increasing attention from the 

international community. In this context, monitoring and 

forecasting water quality is an urgent requirement to ensure 

safe and clean water for the community. In the field of water 

production and supply, water salinity is an important factor 

affecting the water treatment process. According to QCVN 01-

1:2018/BYT, the maximum allowable salinity of drinking water 

is 250 mg/L. Salinity varies seasonally and over time, and 

forecasting surface water salinity for water treatment is a 

challenge. To meet this need, the use of time series forecasting 

models has become increasingly important. This paper proposes 

appropriate machine learning models for forecasting water 

salinity. Our method learns the trends and patterns in river 

salinity data using statistical and machine learning techniques 

to build time series forecasting models. Also, we compared 

performance of using one-variable data with three-variable 

data, and explain how the size of window affects model 

performance, and impacts of forecast period as well. We 

evaluated our method on a 6-year dataset of river salinity data. 

The results illustrate that our selected models can forecast river 

salinity with a high performance. Our method can be employed 

to a wide range of water supply systems to improve the 

effectiveness of procedures for treating water and ensure the 

safety and sustainability of water resources. 

Keywords—water salinity, machine learning, deep learning, 

time series. 

I. INTRODUCTION 

Water is a vital resource for human existence and 
development. Ensuring safe and clean water is essential for 
protecting public health and improving the quality of life. 
Therefore, research and forecasting of raw water salinity 
before treatment is extremely important to ensure the efficient 
and sustainable use of water resources. 

Challenges of pollution and climate change have 
significantly impacted water quality and salinity in water 
production areas. By building an accurate forecasting model, 
predicting the salinity of raw water before treatment could 
help to make appropriate decisions and treatment plans to 
minimize the impact of salinity on water supply systems and 
treatment processes. 

Building time series models has challenges of determining 
the window size, forecast period, and the number of features 
used.  In this research, transitional data were generated from 
raw data based on window size and forecast period to 
determine whether these factors affect the performance of 
models. In addition, the correlation between the quantity of 
characteristics and model performance is clarified. We also 
conduct comparison of state-of-the-art models (including 
ANNs, ARIMA, CNNs, GRU, LSTM, and TCN) for time 

series forecasting and selected appropriate models for certain 
contexts. These achievements could support to make science-
based predictions, which can improve the efficiency and 
reliability of water resource management. 

This study contributes to comparison of different models' 
performance on river salinity data, considering the number of 
variables. Additionally, we evaluate these models based on 
window size as well as forecast period. 

II. RELATED WORK 

A. ARIMA 

ARIMA is widely used for forecasting and modeling time 
series. The basic formula of the ARIMA model is represented 
as a set of three parameters (p, d, q). Value of d can be 
determined by the Augmented Dickey-Fuller (ADF). If the p-
value is greater than the significance level (typically 0.05), 
then the time series needs to be integrated further until it 
becomes weakly stationary (has a lower p-value) [1]. The 
partial auto-correlation function (PACF) can be employed to 
determine the value of p. The significant lag on the PACF plot 
often determines the value of p. If it crosses the first lower 
level on the horizontal line, the value of p is typically equal to 
that position. To determine the value of q, the ACF plots can 
be used. The significant lag on the ACF plot often determines 
the value of q. If it crosses the first lower level on the 
horizontal line, the value of q is typically equal to that position 
[2]. 

B. Artificial Neural Networks 

Artificial neural networks are composed of linked neurons, 
mirroring the structure of biological neural networks. ANNs 
comprise three layers, including one input layer, one output 
layer, and minimum one concealed layer. 

Traditional neural networks are trained using a process 
called supervised learning. A collection of input-output pairs 
is fed into the network. The network then learns to associate 
the inputs with the outputs. To accomplish this, the 
connections' weights among neurons undergo adjustments. 
These adjustments rely on an optimization algorithm to 
modify the weights. 

The weights are adjusted based on the error using a method 
called gradient descent, which calculates concerning its 
weights and then modifies these weights to reduce the errors. 
This procedure is iterated multiple times until the weights of 
the neural network reach convergence. A neural network's 
training is basically an optimization issue. After the training 
process, providing the network with a dataset that was not 
used in the training process as input, and the network will give 
you a predicted output [3]. 

208979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024



C. Convolutional Neural Networks 

The model (CNNs) is primarily applied for computer 
vision. The model’s applications are image classification, 
object detection, and segmentation issue. They can also be 
applied in recommender systems, natural language 
processing, and time series. An example a CNN regression 
architecture as illustrated in Fig. 1. 

 

Fig.  1. A schematic representation of the Conv1D architecture [4] . 

According to output layer for classification issue, the 
number of output units depends on the quantity of categories. 
For neural networks used for regression, there is one output 
[5]. 

D. Long Short-Term Memory 

LSTM is able to learn long-term dependencies. The Fig. 2 
depicts the alterations implemented on the concealed at time 
step t. These equations below represent an LSTM: 

𝑖𝑖 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ℎ𝑡𝑡−1 + 𝑈𝑈𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑉𝑉𝑖𝑖𝑐𝑐𝑡𝑡−1) (1) 

𝑓𝑓 = 𝜎𝜎(𝑊𝑊𝑓𝑓ℎ𝑡𝑡−1 + 𝑈𝑈𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑉𝑉𝑓𝑓𝑐𝑐𝑡𝑡−1) (2) 

𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ℎ𝑡𝑡−1 + 𝑈𝑈𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑉𝑉𝑜𝑜𝑐𝑐𝑡𝑡−1) (3) 

𝑔𝑔 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑊𝑊𝑔𝑔 ℎ𝑡𝑡−1 + 𝑈𝑈𝑔𝑔𝑥𝑥𝑡𝑡  (4) 

𝑐𝑐𝑡𝑡 = (𝑓𝑓 ∗ 𝑐𝑐𝑡𝑡−1) + (𝑔𝑔 ∗ 𝑖𝑖)  (5) 

ℎ𝑡𝑡 = tanh(𝑐𝑐𝑡𝑡) ∗ 𝑜𝑜  (6) 
In which, i, f, and o interpret for the input gate, forget gate, 

and output gate, respectively. The calculations are performed 
employing identical equations, albeit utilizing distinct sets of 
matrices of parameters Wi, Ui, Wf, Uf, and W0, U0. 

The forget gate is used to calculate the degree of the 
previous state ht-1 can pass through. The input gate is 
employed to determine the degree of new state calculated for 
the existing input xt can pass through, and the output gate 
determines the degree, which revealed the internal hidden 
state to the next layer. Calculating of the state g relies on both 
the input xt and the preceding state ht-1.  

 

Fig.  2. A visual depiction of LSTM cell [5]. 

Derived from i, f, o, and g, the calculation of state ct at time 
t follows a specific procedure: it involves the multiplication of 
the cell state ct-1 at time (t-1) by the forget gate f, along with 
the product of the state g and the input gate i. Fundamentally, 
this process represents a mechanism for amalgamating prior 
memory and incoming information; specifically, adjusting the 
forget gate to 0 disengages the retention of former memory, 
while setting the input gate to 0 excludes the integration of the 

newly computed state. Subsequently, the computation of the 
hidden state ht at time t is contingent upon the cell state ct at 
time t, guided by the output gate o [5]. 

E. Gated Recurrent Units 

The Gated Recurrent Units (GRU) represent a variation of 
the LSTM model, preserving the capacity to mitigate the 
vanishing gradient issue akin to LSTM. However, GRU 
exhibits a comparatively simpler internal architecture, leading 
to expedited training due to its reduced computational 
demands for updating the hidden state. A GRU cell includes 
the update gate as z and the reset gate as r. The proportion of 
the previous memory to preserve can be determined by update 
gate, while the reset gate is used to determine the method for 
integrating the new input with the existing memory.  

The GRU cell determines how to compute the state ht at 
time t from the hidden state ht-1 following set of equations: 

𝑧𝑧 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ℎ𝑡𝑡−1 + 𝑈𝑈𝑧𝑧𝑥𝑥𝑡𝑡)  (7) 

𝑟𝑟 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ℎ𝑡𝑡−1 + 𝑈𝑈𝑟𝑟𝑥𝑥𝑡𝑡)  (8) 

𝑐𝑐 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐 (ℎ𝑡𝑡−1 ∗ 𝑟𝑟) + 𝑈𝑈𝑐𝑐𝑥𝑥𝑡𝑡) (9) 

ℎ𝑡𝑡 = (𝑧𝑧 ∗ 𝑐𝑐) + ((1 − 𝑧𝑧) ∗ ℎ𝑡𝑡−1) (10) 
The computations for the update gate z and reset gate r 

involve a fusion of the prior hidden state ht-1 and the present 
input xt. The cell state c is determined through a functional 
relationship between the output of the reset gate r and the input 
xt. Ultimately, the derivation of the hidden state ht at time t 
hinges upon the relationship between the cell state c and the 
preceding hidden state ht-1. The parameters Wz, Uz, Wr, Ur, and 
Wc, Uc are learned during training [5]. 

F. Temporal Convolutional Networks 

Temporal convolutional networks can be described by a 
set of simple architectures, which is shown in Fig. 3. The 
distinct features of TCNs is that no information "leaks" from 
the future into the past. In addition, the structure is capable of 
receiving input sequences of varying lengths and mapping 
them into output sequences of equivalent lengths, just like an 
RNN. 

TCNs include dilated convolutions and residual 
connections. A residual block is represented as (11). 

o = Activation(x + F(x)) (11) 

 

Fig.  3. Structure of the Temporal Convolutional Networks. (a) A dilated 

causal convolution with dilation factors d = 1; 2; 4 and filter size k = 3. (b) 

TCN residual block 

In TCNs, the widths of input may differ output. To address 
the mismatch between input and output widths, the authors use 
1x1 convolution to guarantee that the element-wise addition 

⊕ receives tensors of the same size [6]. 

III. DATA 

Experimental data: water quality data of the Saigon River, 
which are monitored at the Hoa Phu pumping station, belongs 
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to Tan Hiep Water Plant, where position shown in Fig. 4. Data 
are mean values of each day, collected over a period of 6 years 
(from January 1, 2017 to December 31, 2022). It contains 11 
features. 

 

Fig.  4. Location of Hoa Phu pumping station. 

IV. EXPERIMENT AND RESULT 

A. Experimental Procedure 

The data are experienced cleaning process, which is to 
remove outliers, which values greater than and less than 3SD 
(standard deviation) [7]. Missing data will be replaced with 
linear interpolation values as (12). Let's consider that the x-
data points are arranged in increasing order [8]. 

ŷ(x) = 𝑦𝑦𝑖𝑖 + (𝑦𝑦𝑖𝑖+1−𝑦𝑦𝑖𝑖)(𝑥𝑥−𝑥𝑥𝑖𝑖)
(𝑥𝑥𝑖𝑖+1−𝑥𝑥𝑖𝑖)            (12) 

Where:  ŷ(x) is the interpolated value at x, yi and yi+1 are the 
known values at xi and xi+1, x is the point at which we want to 
interpolate 

 The next process is feature selection. The dataframe has 
11 features, after calculating Pearson correlation coefficient of 
these features to salinity as (13), the three features are selected, 
including pH, electrical conductivity, and salinity, because the 
Pearson correlation coefficient of those are higher than 0.50 
and those parameters can be monitored by sensors instead of 
manually tested in chemical laboratory of the water plant. 

𝑟𝑟𝑋𝑋𝑋𝑋 = ∑(𝑋𝑋𝑖𝑖−�̅�𝑋)(𝑋𝑋𝑖𝑖−�̅�𝑋)
√∑(𝑋𝑋𝑖𝑖−�̅�𝑋)2 ∑(𝑋𝑋𝑖𝑖−�̅�𝑋)2         (13) 

Where: Xi  and Yi are the values of feature X and Y for the     
i-th observation. �̅�𝑋 and �̅�𝑌 are the means of features X and Y, 
respectively [9]. 

After selecting features, new datasets were generated from 
clean dataset to clarify whether or not using three variables has 
better performance than one variable, increasing window size 
could improve model performance, and the longer the forecast 
period, the higher level of error. To explore how window size, 
the number of variables, and forecast period affect 
performance of models, the period of time applied for window 
size will be altered from 7 days to 15 days and 30 days, and 
forecast period will be changed from 1 day to 3 days and 7 
days, the number of variables varied as 1 variable and 3 
variables. These generated 18 datasets with 9 three-variable 
datasets and 9 one-variable datasets. For example, “Dataset 
3var, 30-1” in Fig. 5 illustrates for data using three variables, 
window size is 30 days, and forecast period is 1 day. The 
research employed ANN, CNN, GRU, LSTM, TCN, TCN, 
and ARIMA for training data. These models are trained on 
one-variable and three-variable, excepting to the ARIMA 
model is only trained on one-variable dataset. The matrix of 
datasets and models need to be trained and tested in 99 running 
times.  

The datasets were divided into three subsets: training set - 
60%, validating set - 20%, and test set – 20% of data [10]. The 
workflow of the research is summarized in Fig. 5. To split 
data, the split points in time were applied as the first 60% for 
training, the next 20% for validating, and the rest 20% for 
testing. 

After splitting process, the data will be standardized as 
follows (14) before training and testing.  

                     𝑧𝑧 = 𝑥𝑥−𝜇𝜇
𝜎𝜎                     (14) 

Where: z is the standardized value, x represents the original 
data, μ represents the average of the dataset, σ represents the 
standard deviation of the dataset [11]. 

B. Evaluation Metrics 

We used two performance metrics: Mean Absolute Error 
(MAE) and Mean Absolute Percentage Error (MAPE), 
defined as follows: 

     𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛 ∑|𝑥𝑥𝑖𝑖 − �̂�𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1
                      (15) 

    𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  100
𝑛𝑛 ∑

|𝑥𝑥𝑖𝑖 − �̂�𝑥𝑖𝑖|
𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
               (16) 

In which, xi is the actual salinity data, x̂i is the predicted 
salinity data, and n represents the quantity of data points [12]. 

Fig.  5. The workflow of data processing. 
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C. Experimental Environment 

The research had implemented on Window 10, used 
Python programming language. Scripts were compiled on 
Visual Studio Code. The computer configurations are 11th 
Generation Intel® Core™ i5 Processor and Ram DDR4 8GB 
2666Mhz. 

D. Results and Discussion 

D.1. Comparison by Forecast Priod 

From the results of Fig.6, Fig. 7, Fig. 8, Fig. 12, Fig. 13, 
and Fig. 14, the experiment intentionally fixed the window 
size as 7 days, 15 days, and 30 days to compare performance 
of models when increased forecast period. They indicate that 
the MAE and MAPE error tend to increase as the forecast 
period increases from 1 day to 3 days and 7 days, while the 
window sizes were fixed as 7 days, 15 days, and 30 days. The 
ARIMA model has a higher level of error than the other 
models because it can only forecast well for stationary datasets 
[13]. The best 1-day forecast model is CNN_1Var with an 
MAE error of 1.40mg/L (MAPE error of 4.31%) with a 
window size of 7 days. The GRU_1Var model has the lowest 
MAE error (3.20 mg/L) of all the 3-day forecast models, but 
GRU_1Var and CNN_1Var have the same level of error by 
MAPE as 10.0% with a window size of 7 days. The 
ANN_1Var model with a 7-day window size has the lowest 
MAE error (5.38 mg/L) of all the 7-day forecast models, while 
comparing by MAPE error, the LSTM_3Var has better 
performance with MAPE error as 15.9% comparing to 
ANN_1Var as 16.7% in the same window size of 7 days. 
When comparing in different metrics, the best order 
performance model may change, because the metrics 
measuring certain aspects of the data or the random sampling 
used [14]. The CNN_1Var model has Conv1D layers that are 
able of extracting spatial features such as trends, peaks, or 
variations in time series. This allows the model to learn 
important short-term patterns in data, leading to better 
forecasting performance [15]. The GRU_1Var outperform 
other models in case short-term forecasting task because its 
few parameters with simple structure [16, 17]. The 
ANN_1Var models  could provide comparable forecasting 
results because data are relatively short and dependencies 
between the data points are not complex [18]. 

D.2. Comparison by Window Size 

As the results of Fig. 9, Fig. 10, Fig. 11, Fig. 15, Fig. 16, 
and Fig. 17, the MAE error also tends to rise as the window 
size increases from 7 days to 15 days and 30 days, while 
forecast period was fixed as 1 day, 3 days, and 7 days. That 
also happens when comparing by MAPE metric. It is notable 
that increasing window size could improve performance of 
models for longer forecast period according to models which 
have buffer memory like GRU and LSTM. As Fig. 17 show 
that using appropriate window size and multivariate facilitate 
the LSTM_3Var to achieve the best performance with forecast 
period as 7 days with MAPE 15.9%. For TCN model, dilated 
convolution and residual block may enhance model 
performance [6].  

 

Fig.  6. MAE of models using window size as seven days, and forecast 

period as one day, three days, and seven days. 

 
Fig.  7. MAE of models using window size as 15 days, and forecast period 

as one day, three days, and seven days. 

 
Fig.  8. MAE of models using window size as 30 days, and forecast period 

as one day, three days, and seven days. 

 
Fig.  9. MAE of models using forecast period as 1 day, and window size as 

one day, three days, and seven days. 

 
Fig.  10. MAE of models using forecast period as 3 days, and window size 

as one day, three days, and seven days. 

211



D.3. Comparison by The Number of Variables 

As the same window size and forecast period, increasing 
the number of variable results in rise of error in both metrics. 
This phenomenon is known as the "curse of dimensionality". 
As the number of variables increases, the available data 
becomes sparse in the high-dimensional space. This sparsity 
can lead to difficulties in accurately estimating model 
parameters, identifying meaningful patterns, and generalizing 
well to unseen data [19]. 

 

 
Fig.  11. MAE of models using forecast period as 7 days, and window size 

as one day, three days, and seven days. 

 
Fig.  12. MAPE of models using window size as 7 days, and forecast period 

as one day, three days, and seven days. 

 
Fig.  13. MAPE of models using window size as 15 days, and forecast 

period as one day, three days, and seven days. 

 
Fig.  14. MAPE of models using window size as 30 days, and forecast 

period as one day, three days, and seven days. 

 
Fig.  15. MAPE of models using forecast period as 1 day, and window size 

as one day, three days, and seven days. 

 
Fig.  16. MAPE of models using forecast period as 3 days, and window size 

as one day, three days, and seven days. 

 
Fig.  17. MAPE of models using forecast period as 7 days, and window size 

as one day, three days, and seven days. 

 
Fig.  18. Actual values and predicted values of CNN_1Var model with 

window size of as 7 days and forecast period as 1 day. 

 
Fig.  19. Actual values and predicted values of CNN_1Var model with 

window size as 7 days and forecast period as 3 days. 
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Fig.  20. Actual values and predicted values of CNN_1Var model with 

window size as 7 days and forecast period as 7 days. 

V. CONCLUSION AND FUTURE WORK 

The study focuses on forecasting the salinity of untreated 
water, a topic not previously explored in Tan Hiep Water 
Plant. Extensive real-time data was employed for this purpose. 
Sophisticated techniques in deep learning and machine 
learning tailored for predicting time series were effectively put 
into practice. The research involved testing and comparing the 
models' effectiveness across diverse conditions.  

In the near future, we integrate additional variables into the 
model to enhance accuracy. Experimenting with advanced 
deep learning models based on transformer architecture for 
this forecasting problem. We also continue to build a real-time 
forecasting system, research and improve a more general data 
preprocessing algorithm, as well as inherit and develop 
machine learning models to achieve better performance, in 
order to lay the foundation for the development of higher-level 
problems, with the ultimate goal of this development direction 
being to build a real-time application that can help operators 
quickly grasp the trend of salinity changes as quickly as 
possible.  
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