
Accelerating Federated Learning at Programmable
User Plane Function via In-Network Aggregation

Chanbin Bae∗, Hochan Lee∗, Sangheon Pack∗, and Youngmin Ji†
∗School of Electrical Engineering, Korea University, Seoul, Korea

E-mail: {bin6050, ghcks1000, shpack}@korea.ac.kr
†Korea Electronics Technology Institute, Gyeonggi-do, Korea

E-mail: ym.ji@keti.re.kr

Abstract—Recently, 5G mobile networks are evolving with
emerging real-time interaction applications such as AR/VR,
which require high throughput and low latency. To meet this de-
mand, user plane function (UPF) should support high-speed data
plane and protocol extensions with continuously evolving spec-
ifications. Therefore, UPF can be offloaded to a programmable
data plan (PDP), which supports flexible packet processing and
protocol extension. Meanwhile, as machine learning (ML) models
have grown in size and privacy concerns have increased, federated
learning (FL) was proposed as a distributed manner solution in
mobile networks. To improve the performance of FL, PDP can be
used to enhance communication efficiency and decrease learning
delay by utilizing in-network aggregation (INA). In this context,
solutions for accelerating FL at UPF can be implemented on PDP.
In this paper, we present AccelFL that is designed to accelerate
FL at UPF by aggregating local gradients in networks via INA.
Our experimental results demonstrate that AccelFL can reduce
job completion time (JCT) and communication overhead by 30%
and 36.9%, respectively.

Index Terms—User Plane Function, Federated Learning, In-
Network Aggregation.

I. INTRODUCTION

Emerging 5G mobile network applications, such as au-
tonomous driving or AR/VR, require high throughput and low
latency. To support these requirements, user plane function
(UPF), a data plane of 5G core networks, must perform high-
speed data processing. In addition, the UPF functionalities can
be written in match-action rules and continuously updated with
evolving specification changes by interacting with the control
plane. Since programming protocol-independent packet pro-
cessing (P4), which is the most popular programming data
plan (PDP) language, enables flexible packet processing and
the update of match-action tables with control plane, a PDP
with P4 is a candidate for implementing high-speed data
processing UPF [1]. In this context, UPF can be offloaded to
a PDP which enables line-rate, flexible, and extensible packet
processing [3].

Meanwhile, in traditional machine learning (ML), an ML
model is trained on a central server with data from clients.
Since the central server should collect data from distributed
clients, privacy concerns have arisen. To address this problem,
federated learning (FL) has been introduced, which runs a ML
model in each distributed device with remaining data on the
local devices. This solution allows distributed learning with
five steps [8]: 1) FL server trains the initial model, 2) FL

server transmits the model to clients, 3) each client trains the
model locally using its own data, 4) each client transmits the
local gradients to FL server, and 5) FL server aggregates the
gradients to train global model and broadcast the aggregated
global model. However, transmitting local updates causes high
communication costs, which leads to performance degradation.

On the other hand, PDPs are an appropriate place to support
ML due to their location in the middle of networks [5] and
their ability with flexible packet processing, which enables
computing in networks. Leveraging these features of PDPs
can accelerate distributed deep learning (DDL) via in-network
aggregation (INA) by computing local gradient updates in
programmable switches [6], [7]. Furthermore, these schemes
can alleviate communication overhead by reducing gradient
packets. With these technologies, we can accelerate FL in
mobile networks via PDP. Moreover, UPF is a suitable place
for implementing FL acceleration schemes because every data
packet in mobile networks should pass through UPF. However,
to the best of our knowledge, there is no such research that
implements integrated INA and UPF functionality together in
PDP.

In this paper, we propose AccelFL, which integrates UPF
functionality and INA for FL acceleration. AccelFL is imple-
mented on a PDP with UPF and gradient packet aggregation.
It can accelerate the training time for FL and reduce the
training traffic. Evaluation results show that AccelFL can
accelerate learning models in terms of job completion time
(JCT) performance and communication efficiency compared
to traditional FL.

The remainder of this paper is organized as follows. We
describe the architecture and design of our proposed scheme,
AccelFL, in Section II and Section III. Then, we show the
performance evaluation of AccelFL in terms of JCT and
communication overhead in Section IV. Finally, we conclude
the paper in Section V.

II. SYSTEM MODEL

Figure 1(a) and Figure 1(b) illustrate the architecture of
AccelFL, which consists of user equipment (UE), gNodeB
(gNB), and an AccelFL switch.

In our system model, UEs serve as participants in FL.
UEs generate two types of packets: local gradient packets for
training a global model and regular data traffic for general data

218979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

(a)

(b)

Fig. 1: (a) AccelFL with normal packets. (b) AccelFL
with gradient packets.

Fig. 2: Experiment Topology.

communication purposes. These packets are sent to the gNB,
then gNB encapsulates them with a GPRS tunneling protocol
(GTP) header for tunneling purposes. Once the packets reach
the gNB, they are forwarded to the AccelFL switch. Sub-
sequently, the AccelFL switch identifies whether the packets
are local gradient packets or regular data packets. When the
packet is a regular data packet, the AccelFL switch proceeds
to forward it to the external internet as part of regular data
communication flow as shown in Figure 1(a). However, when
the packet is a local gradient packet, the AccelFL switch
initiates an INA process. In this case, it aggregates the local
gradients contained within the packet. After all local gradients
are received and aggregated, the AccelFL switch multicasts
aggregated gradient packets to multiple UEs, enabling FL
across the networks as shown in Figure 1(b). Following the
above procedures, UEs within training the same job can update

the local model with globally aggregated gradients.

III. DESIGN OF ACCELFL
As depicted in Figure 1, AccelFL provides both UPF and

INA so the pipeline of the AccelFL switch is constructed in
two components: the first one is about UPF and the other one
is about INA.

The UPF component in the AccelFL handles regular data
packets. It provides several functionalities of UPF such as
packet classification, Quality of Service (QoS) enforcement,
and GTP tunneling based on match-action tables in PDP. The
packet classification classifies the packet’s direction, appli-
cation ID, and traffic class for QoS enforcement and GTP
tunneling. AccelFL uses the IP header’s destination IP address,
port number, and protocol number to match the packet’s traffic
class and direction. According to this matched information of
packets, AccelFL sets meter [4] which measures the traffic rate
of a specific traffic class. If the meter indicates RED which
means excess of a threshold, AccelFL forces to drop packets
for QoS enforcement. GTP tunneling is then performed to
encapsulate GTP headers for downlink packets or decapsulate
GTP headers for uplink packets.

The INA component in the AccelFL handles gradient pack-
ets. It allows the aggregation of local gradients by dynamically
allocating a register to store partially aggregated local gradi-
ents. The index of the allocated registers is distinguished by
a pair of application IDs and a sequence number indicating
the ID of FL model and the order of generated gradients
respectively. During aggregation, AccelFL drops the gradient
packets until they are fully aggregated. When gradients are
fully aggregated, It multicasts the aggregated global gradient
to UEs and deallocates the register to reuse for other gradients.
With this design, AccelFL provides a reduction in training time
and communication overhead. Since the aggregation for the
global update in traditional FL is done in the FL server, every
local gradient packet should be sent to the FL server, which
causes massive communication overhead and additional delay.
However, AccelFL addresses these problems by aggregating
gradients at line-rate processing and dropping the unnecessary
packets that are not fully aggregated. In addition, it can
provide scalability by dynamically allocating registers during
aggregation.

In summary, we can improve the latency of both regular data
packet processing and FL training by using AccelFL. Packet
processing delays for the regular data packets are reduced
by the UPF component, and the communication efficiency
and FL training latency are improved by the INA component
of AccelFL. Therefore, AccelFL has its strength in mobile
networks where low latency and sufficient bandwidth are
paramount.

Number of Packets 1000 5000 10000
AccelFL 3.3 16.3 32.6

Baseline Scheme 5.2 25.8 51.7

TABLE I: Total Amount of Traffic (MB).

219

Fig. 3: Job Completion Time.

IV. EVALUATION

We configured the topology as depicted in Figure 2. The
implementation of AccelFL is based on [3], [7] and targets
to BMv2 software programmable switch. The topology is
composed of an AccelFL switch and 5 UEs that generate
local gradient packets, and the FL server that is used in a
baseline scheme. For the purpose of comparison, we compared
the performance of AccelFL with the baseline scheme which
employs the traditional FL process. In the baseline scheme,
UEs generate local gradient packets and the FL server is
responsible for aggregating local gradients and updating the
global model. To demonstrate the performance of training
acceleration and communication overhead with AccelFL, we
measure two metrics: JCT and the total amount of traffic. JCT
indicates the total time consumed until the last global gradients
arrive at the UEs. The total amount of traffic indicates the
cumulative amount of traffic during the experiment.

Figure 3 shows the JCT performance in three cases that
differ in the number of gradient packets. Our evaluation
demonstrates that AccelFL achieves a remarkable reduction
of 30% in JCT in all cases when compared to the baseline
scheme. This improvement can be attributed to AccelFL’s
ability to aggregate local gradients at line-rate speeds within
the network with PDP, eliminating the need for aggregations
in the FL server. Furthermore, by eliminating the need to ex-
change gradient packets with the FL server, AccelFL achieves
an additional reduction in communication delay.

Table I presents the reduction in communication overhead
with AccelFL in three cases that differ in the number of gradi-
ent packets. As shown in Table I, the communication overhead
is reduced by 36.9% than the baseline scheme. This is because
AccelFL can reduce the traffic path for gradient packets. In the
baseline scheme, gradient packets have to travel an additional
path compared to AccelFL to aggregate gradients in the FL
server. However, AccelFL provides aggregation functionality
in the switch, which can eliminate communication between

the switch and the FL server. Therefore, the total amount of
traffic of AccelFL is reduced.

V. CONCLUSION

We proposed AccelFL, an INA service with UPF func-
tionality designed to accelerate FL in the mobile network.
AccelFL switch provides UPF operations for regular data
packets, including GTP handling and QoS enforcement. it also
takes on an additional role when dealing with FL model update
packets, acting as an aggregator that aggregates local gradient
values and multicasts the resulting global packets to update
local FL models. Our experiments have shown that AccelFL
can reduce JCT and communication overhead by up to 30%.

In our future work, we will extend our source code to facil-
itate the implementation of AccelFL on the Tofino hardware
programmable switch [2]. In addition, we will integrate the
FL framework to evaluate the performance in a more practical
environment.

ACKNOWLEDGMENT

This work was supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2022-
0-01015, Development of Candidate Element Technology for
Intelligent 6G Mobile Core Network), by the Korea Institute
of Energy Technology Evaluation and Planning (KETEP) and
the Ministry of Trade, Industry & Energy (MOTIE) of the
Republic of Korea (No. 20212020800120), and by National
Research Foundation (NRF) of Korea Grant funded by the
Korean Government (MSIT) (No. 2021R1A4A3022102).

REFERENCES

[1] P. Bosshart et al., “P4: Programming Protocol-Independent Packet Pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 87-95, July 2014.

[2] Intel Tofino. [Online] Available: https://www.intel.com/content/www/us/
en/products/details/network-io/intelligent-fabric-processors/tofino.html
[Accessed: 15-Oct-2023]

[3] R. MacDavid et al., “A P4-baed 5G User Plane Function,” in Proc. ACM
SOSR 2021, October 2021.

[4] J. Heinanen et al., “RFC 2698: A Two Rate Three Color
Marker,” Technical report, RFC Editor, USA, 1999. https://www.rfc-
editor.org/rfc/rfc2698.html

[5] W. Liu et al., “Programmable Data Plane Intelligence: Advances, Oppor-
tunities, and Challenges,”IEEE Network, early access.

[6] A. Sapio et al., “Scaling Distributed Machine Learning with In-Network
Aggregation,” in Proc. USENIX NSDI 2021, April 2021.

[7] C. Lao et al., “ATP: In-network Aggregation for Multi-tenant Learning,”
in Proc. USENIX NSDI 2021, April 2021.

[8] S. Banabilah et al., “Federated learning review: Fundamentals, enabling
technologies, and future applications,” ELSEVIER Information Processing
& Management, vol. 59, no. 6, pp. , November 2022.

220

