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Abstract— In the dynamic landscape of vehicular 
communication environments, adequate resource allocation and 
management are critical for ensuring seamless communication, 
particularly in scenarios involving constantly moving vehicles. To 
efficiently allocate resources, the base station requires real-time 
Channel State Information (CSI) from devices. Consequently, 
vehicles must continuously report their Channel Quality 
Indicator (CQI) to the base station. The base station, relying on 
the reported CQI, determines the Modulation and Coding 
Scheme (MCS). This study introduces a context-aware CQI 
prediction framework utilizing bidirectional Long Short-Term 
Memory (Bi-LSTM) techniques. A distinguishing feature of this 
framework is the strategic incorporation of location information, 
precisely latitude and longitude, and two key network 
parameters, namely Received Signal Strength Indication (RSSI) 
and Reference Signal Received Power (RSRP), tailored to adhere 
to IEEE 802.11p Wireless Access in Vehicular Environments 
(WAVE) standards. The simulation results demonstrate the 
superiority of the proposed scheme, showcasing lower Mean 
Squared Error (MSE) when compared to alternative methods 
and previous studies. This strategic inclusion of geographical 
data not only highlights the model's adaptability to spatial 
dynamics but also positions it as a comprehensive solution for 
accurate CQI prediction, thereby contributing to the efficiency of 
resource management in intelligent transportation systems. 

Keywords— V2X, bidirectional long short-term memory (Bi-
LSTM), Channel quality indicator (CQI), deep learning, location-
awareness, Beyond 5G/6G. 

I.  INTRODUCTION  
In recent years, the progress in vehicle-to-everything (V2X) 

communication has become pivotal for intelligent 
transportation systems (ITSs), encompassing various wireless 
technologies like vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), vehicle-to-pedestrian (V2P), interactions 
with vulnerable road users (VRUs), and cloud network 
connectivity (V2N) [1]. This evolution aims to integrate V2X 
into 6G wireless systems [2], positioning it as a vital 
component of ITSs. The primary technologies driving V2X 
communications are dedicated short-range communication 
(DSRC)-based vehicular networks and cellular-based vehicular 
networks [3], with DSRC standards like IEEE 802.11p for 
WAVE and IEEE 1609.1.4 playing a foundational role [4]. 

The efficacy of V2X communication systems relies on the 
dynamic nature of wireless channel responses, particularly in 
high-mobility scenarios. V2X communication is instrumental 
in delivering reliable, low-latency services for vehicles in 
applications like forward collision warning, road safety, and 
emergency stops. Meeting stringent requirements for real-time 
applications, such as less than 5ms end-to-end latency for 
1600-byte messages with a 99.999% probability of success, is 
imperative. Traffic patterns involve event-driven and periodic 
messages at a 100ms interval, supporting speeds up to 500 
km/h in highway scenarios [5]. Meeting these demanding 
requirements necessitates a profound understanding of the 
wireless channel characteristics, and this understanding must 
be seamlessly integrated into communication protocols. 
Therefore, efficient radio resource management by the base 
station (BS) becomes paramount. To achieve this, the BS 
requires accurate CSI from the devices, encompassing path 
loss, amplitude, and phase characteristics. However, obtaining 
precise CSI in fast-fading environments poses a significant 
challenge. Consequently, the BS solicits CQI from the devices, 
which encompass radio parameters such as RSSI, RSRP, 
reference signal received quality (RSRQ), and signal-to-noise 
ratio (SNR) [6]. 

CQI, calculated through a straightforward formula based on 
radio signal strength, provides valuable insights into the 
channel characteristics. Subsequently, the BS leverages the 
reported CQI from vehicular devices to determine the MCS. 
This decision significantly impacts throughput, as the MCS 
combines modulation and code rate adjustments according to 
the prevailing channel conditions. 

In the context of 5G and upcoming communication systems 
designed to support V2X, the integration of precise location 
information emerges as a valuable asset for wireless network 
design and optimization [7]. The attenuation of the SNR with 
increasing distance, attributed to path loss, underscores the 
importance of leveraging location data for estimating received 
power and assessing interference levels. Notably, 5G user 
terminals exhibit predictable mobility patterns primarily 
associated with individuals or fixed and controllable entities. 
This predictability enhances the utility of location information 
in optimizing network performance. The strategic utilization of 
precise location information thus becomes integral for 
improving the efficiency and functionality of future 
communication networks[8]. 
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In addition, recent endeavors have explored harnessing the 
potent capabilities of cutting-edge machine learning (ML) and 
deep learning (DL) models across various domains, such as 
computer vision [9], signal identification [10], prediction [11], 
and multiple fields of wireless communication [12]. The 
capacity of deep learning models to uncover intricate 
relationships among numerous features has led to their 
application in crucial real-world communication scenarios, 
including traffic classification, network slicing, MIMO signal 
classification, handover, and mobility predictions. ML and DL-
based CQI predictions [13] and [14] exemplify such innovative 
approaches. 

Therefore, this paper advantageously leverages the 
significance of location information and the efficacy of DL 
technologies, with a specific focus on harnessing the 
capabilities of bidirectional long short-term memory (Bi-
LSTM) for CQI prediction in vehicular communications. The 
adoption of Bi-LSTM is motivated by its unique capacity to 
comprehend bidirectional dependencies in sequential data, a 
critical aspect in modeling the dynamic characteristics of 
wireless channels in vehicular communication. The paper 
proposes a DL model that predicts CQI based on device 
location and two essential network parameters (RSSI and 
RSRP) tailored for swiftly changing channels in the moving 
environment. This location-aware RSSI and RSRP-based CQI 
prediction aims to decipher channel characteristics, ultimately 
enhancing communication performance in 5G and beyond 
networks. 

II. RELATED STUDIES 
Maintaining stable transmission for safety in vehicular 

communication is challenging due to frequent channel 
variations. Recent studies indicate that ML/DL techniques 
outperform traditional signal processing methods in predicting 
CQI and CSI, offering a promising solution for addressing this 
challenge. 

Liu et al. [15] introduced an intelligent connected vehicle 
system that enhances resource management and 
communication by predicting radio channel parameters. Their 
LSTM-based channel prediction model uses historical CSI, 
estimated through Rayleigh fading distribution. However, 
relying solely on statistical models for real-world channel 
analysis may introduce errors. 

Another recent investigation [14] focused on mitigating the 
CQI feedback delay through the application of traditional ML 
techniques and evolutionary computing. This study, uniquely 
designed to operate at the user equipment (UE) side, stands out 
by eliminating the need for alterations in signaling protocols 
between the gNB (Next Generation NodeB) and UE, thereby 
avoiding any undue burden on the base station. However, a 
notable limitation of this study lies in its challenge to 
incorporate updated SINR values, encompassing a spectrum of 
UE and network parameters. 

Zeng et al. [16] proposed a connected-V2X channel 
estimation model using a spectrum segmentation filter and 
shifting technique. Their system predicts CQI based on SNR 
calculation from the received signal, showing enhanced 
accuracy at 300 km/h. However, the SNR-based CQI relies on 

estimating CSI from OFDM symbols, introducing complexity 
and computational challenges in high-speed, fast-changing 
channels. A related study [17] proposed a lightweight LSTM-
based CQI feedback scheme for IoT devices. However, while 
this approach reduces feedback overhead compared to periodic 
schemes, it is limited to stationary IoT scenarios and lacks 
consideration for device mobility. A study similar to ours [13] 
employed an LSTM model with RSSI as the sole network 
parameter. Despite achieving promising results, with RMSE 
above 40%, the study did not address the constant mobility of 
vehicular devices, overlooking a crucial aspect in dynamic 
environments. 

III. SYSTEM MODEL 
This section furnishes essential background details on 

LSTM and introduces the significance of channel quality 
indicators estimation in wireless communication systems. 

A. Bidirectional Long Short-Term Memory (Bi-LSTM) model 
Long Short-Term Memory (LSTM) is categorized as a 
recurrent neural network (RNN) and utilizes a sequence of 
units featuring input, forgetting, and output gates alongside a 
state unit. These integral components enhance the facilitation 
of information flow, endowing the network with the capability 
to address issues associated with long-term reliance that are 
prevalent in generic RNNs. LSTMs are adept at overcoming 
challenges such as gradient disappearance and explosion. [18]. 
Bidirectional Long Short-Term Memory (Bi-LSTM), a 
subtype of RNN, is designed to process sequential data in both 
forward and backward directions. By combining the strengths 
of LSTM with bidirectional processing, Bi-LSTM captures 
both preceding and succeeding contexts within the input 
sequence. It consists of two crucial components: an LSTM 
structure for forwarding information and another for backward 
transmission. Bi-LSTM is frequently employed in tasks such 
as modeling context information and text classification [19], 
offering a notable advantage in comprehending intricate 
dependencies within the input sequence. 

 
Fig. 1. Bi-LSTM structure 

Its notable advantage lies in capturing the context preceding a 
specific time step, as seen in traditional RNNs and the 
subsequent context. This dual consideration of past and future 
information allows Bi-LSTM to comprehend more intricate 
dependencies within the input sequence [20]. The bidirectional 
nature of LSTMs proves effective in capturing long-term 
dependencies in sequential data by processing input sequences 
both forward and backward. Additionally, the flexibility of 
bidirectional LSTMs allows for customization by adding extra 
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layers, like convolutional or attention layers, thereby 
enhancing performance. 
In Fig. 1, the forward hidden state ℎ𝑑𝑑𝑡𝑡𝑓𝑓   at the time 𝑡𝑡  is 
obtained in the following way: 

 ℎ𝑑𝑑𝑡𝑡
𝑓𝑓 𝑠𝑠𝑖𝑖𝑔𝑔𝑚𝑚𝑜𝑜𝑖𝑖𝑑𝑑 Ψ 𝑓𝑓𝐼𝐼𝑡𝑡 𝓌𝓌 𝑓𝑓ℎ𝑑𝑑𝑡𝑡−

𝑓𝑓 𝛽𝛽𝑓𝑓  () 
Ψ 𝑓𝑓  and 𝓌𝓌 𝑓𝑓  are forward weight values and 𝛽𝛽𝑓𝑓  are forward 
deviation values. 
The hidden backward state ℎ𝑑𝑑𝑡𝑡𝑏𝑏   at time 𝑡𝑡  is defined in the 
following ways: 

 ℎ𝑑𝑑𝑡𝑡𝑏𝑏 𝑠𝑠𝑖𝑖𝑔𝑔𝑚𝑚𝑜𝑜𝑖𝑖𝑑𝑑 Ψ 𝑏𝑏𝐼𝐼𝑡𝑡 𝓌𝓌 𝑏𝑏ℎ𝑑𝑑𝑡𝑡−𝑏𝑏 𝛽𝛽 𝑏𝑏  () 
where, Ψ 𝑏𝑏 and 𝓌𝓌 𝑏𝑏  are backward weight values and 𝛽𝛽 𝑏𝑏  is 
backward deviation value.  
 
When at time 𝑡𝑡 , the output value 𝑦𝑦𝑡𝑡   can be defined in the 
following ways: 

𝑦𝑦𝑡𝑡 𝑄𝑄𝑓𝑓ℎ𝑑𝑑𝑡𝑡
𝑓𝑓 𝑄𝑄𝑏𝑏ℎ𝑑𝑑𝑡𝑡𝑏𝑏 𝛽𝛽   () 

where 𝑄𝑄𝑓𝑓  and 𝑄𝑄𝑏𝑏  
 are weight values and 𝛽𝛽 is a deviation value. 

The choice of Bi-LSTM is motivated by its distinctive 
capability to consider the context from both past and future 
time steps simultaneously. This bidirectional processing proves 
advantageous in scenarios where the efficacy of vehicular 
communication systems heavily depends on anticipating and 
adapting to rapidly changing channel conditions. These 
attributes render Bi-LSTM particularly well-suited for wireless 
network channel prediction, especially in CQI prediction.  

B. Proposed Bi-LSTM-based CQI Prediction  
The provided model comprises a CQI definition rooted in 

real-time location information alongside RSSI and RSRP 
values gathered from the communication environment between 
vehicles and infrastructure. A deep learning architecture, 
specifically a three-layer Bi-LSTM network, is proposed for 
predicting these parameters. This model is expressly crafted to 
deliver swift responses in the dynamic context of vehicular 
communication channels.  

 
Fig. 2. Data prediction system using a Bi-LSTM model 

Fig. 2 visually outlines the CQI prediction algorithm proposed 
in this study, with the model leveraging a Bi-LSTM network. 
The proposed deep learning structure is fine-tuned for optimal 
CQI prediction in vehicular communication by optimizing 
network parameters like layers, hidden units, and input data 
intervals. The CQI, comprising received signal information, 
serves as input to the prediction model, and Table 1 details the 
network configuration and training parameters. The resulting 
optimal LSTM network encompasses input gates, forget gates, 
output gates, and memory cells, enhancing the accuracy of 
CQI predictions in vehicular communication scenarios. 

IV. EXPERIMENT  
The evaluation of the proposed model involves computing 

the variance between the predicted and actual locations at each 
time step, with mean square error serving as the performance 
metric for Bi-LSTM models in this research. The initial section 
of this segment introduces the experimental setup and 
environment, providing context for the subsequent assessment 
indicators of the evaluation model. Following this, the 
proposed model is compared with alternative studies to gauge 
its effectiveness.  

A. Dataset 
The Lumos5G [21], [22] constitutes a fundamental asset for 

an extensive investigation into the dynamics of 4G/5G 
networks. Derived from a meticulous measurement study 
conducted in a major U.S. city, this dataset zeroes in on the 
throughput of commercial mmWave 5G services as 
experienced by applications running on UE. The dataset, 
crafted through a series of comprehensive experiments and 
rigorous statistical analyses, sheds light on critical factors on 
the UE side that significantly impact 4G/5G performance. 
Detailed information about the Lumos5G dataset is available in 
[19]. From this dataset, we get our expected features like 
longitude, latitude, RSSI, and RSRP, and by using RSSI 
values, we generate the CQI value by considering the 
referenced information from [23]. 

B. Experiment Setup: 
The investigations detailed in this article were conducted 

using a consistent computer configuration, featuring an Intel® 
Core™ i7-8700 CPU @3.20GHz ×12 Processor, 16GB RAM, 
and NVIDIA GeForce RTX20270 GPU and operated on the 
Windows 10 platform. The computing provisions ensure a 
robust foundation for conducting our investigation. The CQI 
prediction experiments were implemented using Python 3.9. 
Data points were organized in a time sequence to construct a 
time series called CQI prediction data, incorporating latitude 
and longitude information and corresponding RSSI, RSSP 
values, and associated CQI values.  

The Lumos5G dataset, consisting of 65118 rows with the 
mentioned features, allocated 47,000 rows for model training, 
14,494 for validation, and the remaining for testing the CQI 
prediction model. The training process involved using the 
training set initially, followed by validation set input for model 
validation, and finally, the test set for prediction. The models' 
predictive performance was assessed by analyzing errors 
between actual CQI data in the test dataset and predicted CQI 
data.  

The sliding window method was adopted for handling input 
data in the experiments, with a window size set to 20. This 
means data at every twenty-time point served as input, moving 
one time point at a time, forming the tensor of the input model. 
The reshape function converts Time series data into the 
required format, resulting in 3D tensors (samples, timesteps, 
features). Consequently, the input and output shapes for the 
training dataset were (47000, 20, 3) and (47000, 1), 
respectively. For the validation and test datasets, the shapes 
were (14494, 20, 3), (14494, 1), and (3624, 20, 3), (3624, 1), 
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respectively. The Lumos5G dataset, reflective of real-world 
conditions, was the foundation for the investigations. The 
experimental data for training the model were normalized for 
input data convenience and inversely normalized for 
visualizing results. The chosen optimizer was Adam, with the 
epoch set to 20 to enhance the training process. 

C. Evaluation Metrics 
MSE is the prevalent metric used for evaluating regression 

problems, and our proposed model's performance is measured 
using this metric. The formula for computing the final 
evaluation indicators is detailed in the following equations: 

 
𝑀𝑀𝑆𝑆𝐸𝐸 𝑁𝑁𝑈𝑈𝑀𝑀  𝑦𝑦𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑 𝑡𝑡 − 𝑦𝑦𝑟𝑟𝑒𝑒𝑎𝑎𝑙𝑙 𝑡𝑡  

𝑡𝑡  () 
This equation 𝑦𝑦𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑 𝑡𝑡 represents the predicted CQI value at 

a time 𝑡𝑡 , while 𝑦𝑦𝑟𝑟𝑒𝑒𝑎𝑎𝑙𝑙 𝑡𝑡 signifying the actual CQI value at a 
time 𝑡𝑡 . The MSE metric's lower values indicate a closer 
proximity of the predicted CQI values to the actual ones, 
indicating a higher degree of prediction accuracy achieved by 
the model. 

D. Implementation Process 
Implementation of the Bi-LSTM model for predicting CQI 

in vehicular communication involves four distinct steps: data 
preprocessing, model construction, model training, and future 
value prediction. Fig. 2 shows the whole model implementation 
process and prediction of the CQI. 

Initially, data preprocessing is executed, encompassing 
tasks such as handling missing values and outlier removal and 
employing the sliding window method to transform time series 
data into input-output pairs. Each input aggregates data from 
multiple time steps. At the same time, the output represents the 
value of the subsequent time step, facilitating the conversion of 
time series data into a format conducive to model training. 

Subsequently, the Bi-LSTM model is constructed, featuring 
one input layer, three Bi-LSTM layers, and one dense layer. 
This architecture is designed to facilitate the training and 
prediction of CQI using the Lumos5G dataset. 

The third step involves model training, where the training 
data is utilized to optimize the weight and deviation of each 
model. Forward and backward passes on the training data 
calculate the gradient of the loss function, and the Adam 
optimization algorithm is employed to iteratively update the 
model's parameters, minimizing the loss function. This process 
is repeated until the model's loss function converges or reaches 
a predetermined number of training iterations. 

V. RESULTS AND DISCUSSIONS  
The proposed Bi-LSTM model is architecturally designed 

as a sequence of layers, each playing a crucial role in the 
model's overall functionality. The layer arrangement comprises 
three bidirectional LSTM layers, featuring eight units in each 
layer, followed by a dense layer with a single output unit. 

In the bidirectional LSTM layers, eight units are 
incorporated into each layer, instilling a bidirectional capability 

that enables the model to capture past and future dependencies 
in the input sequence. 

TABLE I.  BI-LSTM PARAMETERS FOR CQI PREDICTIONS 

Bi-LSTM network Parameters 
Layer Input,  

Bidirectional LSTM,  
Dense layer,  
Output regression  

Hidden units  8, 8, 4 
Maximum epoch  20 
Cost function Mean squared error (MSE) 
Learning rate 0.001  
Dropout rate 0.0 
Recurrent drop out 0.0 
Optimizer Adam 

Batch normalization layers are strategically placed after 
each bidirectional LSTM layer, contributing to the stabilization 
and acceleration of the training process. The final dense layer, 
with a single unit, functions as the output layer, producing a 
singular output essential for the model's predictive task. The 
model encompasses 4,177 parameters, of which 4,081 are 
trainable and 96 are non-trainable. 

Throughout the training phase, the model is fed with 
batches of 47,000 examples, each characterized by a sequence 
length of 20 timesteps and three features. The training process 
iterates for 20 epochs, signifying the number of times the 
complete training dataset undergoes processing by the model. 
Dropout and recurrent dropout, set to 0.0, indicate that no 
dropout regularization is incorporated during training. 

A. Performance of Bi-LSTM 
The performance assessment of Bi-LSTM networks 

involves an evaluation based on MSE and complexity. As 
illustrated in Fig. 3, the model exhibits a swift convergence 
with a notably lower MSE loss than the findings in [13] and 
[24].  

The training dynamics of the Bi-LSTM neural network 
unfold over 20 epochs, each comprising 1469 batches. The 
duration for the initial epoch is approximately 75 seconds, with 
a declining trend observed in subsequent epochs, reaching 
around 64 seconds for the final epoch. The progressive 
reduction in training loss, from 2.8701 to 0.0143 (Fig. **#), 
signifies the model's enhanced capacity to minimize the 
disparity between predicted and actual values over successive 
epochs. Correspondingly, the validation loss demonstrates a 
comparable declining pattern, reaching a minimum of 0.0038 
(Fig. 3), indicative of the model's adeptness in generalizing 
well to unseen data. 

Further analysis from Fig. 3 reveals a gradual reduction in 
validation loss, nearing zero after 20 epochs. Additional 
experimentation with the 25th, 40th, and 50th epochs, 
incorporating the early stopping method, substantiates that the 
20th epoch yields the most favorable outcomes. This 
underscores the importance of careful consideration of epoch 
selection in achieving optimal model performance. 

224



 
Fig. 3. MSE loss of Bi-LSTM model 

The time expended per epoch, from 59 to 68 seconds, 
indicates the computational efficiency inherent in the training 
process. This efficiency is underscored by the overall 
completion of training within 1295.58 seconds, highlighting 
the Bi-LSTM model's adeptness in discerning temporal 
dependencies and patterns within the Lumos5G dataset. 

 
Fig. 4. Bi-LSTM model evaluation over training and validation 

dataset 

By examining Fig. 4, it becomes apparent that the training 
error initially exhibits relatively higher values than the 
validation loss. However, over the subsequent eight epochs, the 
training error experiences a gradual decrease until it aligns 
closely with the validation loss. This convergence between 
training error and validation loss indicates a stable model 
training and testing phase, implying the model has successfully 
learned and generalizes well to new data. This phenomenon is 
crucial for ensuring the model's robustness and reliability 
across various scenarios. 

 
Fig. 5. MSE metrics for testing data 

Fig. 5 provides a clear depiction of the effectiveness of the 
proposed model when MSE is employed as the evaluation 
metric, particularly in comparison to BiLSTM models, for 
testing data. Notably, in the majority of cases (approximately 
3500 instances), the MSE values are less than 0.08. For the 
remaining testing data, the errors are below 0.25, indicating the 
model's capability to predict CQI with a high degree of 
accuracy. This performance surpasses the outcomes observed 
in other studies, such as [13], [14], [17]. 

 
Fig. 6. Prediction of CQI from testing data  

The conclusive Fig. 6 depicts the disparity between the 
original CQI and the predicted CQI. Only four cases exhibit the 
maximum distance between the predicted and actual CQI. 
Moreover, the predicted CQI is generally lower than the 
original values in the testing data range of [0-300]. Still, when 
considering values greater than 2.5, the predicted CQI aligns 
closely with the actual CQI. This observation reinforces the 
model's accuracy in predicting CQI values, particularly in cases 
where deviations are minimal.  
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VI. CONCLUSIONS 
The proposed Bi-LSTM model is structured to effectively 

capture temporal dependencies in sequential data, specifically 
tailored for the context of CQI prediction in vehicular 
communication environments. The presented architecture 
balances complexity and performance, as demonstrated by its 
competitive results regarding Mean Squared Error during 
training, validation, and testing. An integral aspect contributing 
to the success of the proposed Bi-LSTM model is the 
incorporation of key features, with a notable emphasis on 
location information such as latitude and longitude values. 
These geographical parameters play a pivotal role in predicting 
CQI accurately. Incorporating location information as a 
prominent feature enhances the model's understanding of the 
complex interplay between communication channels and 
geographical context, ultimately contributing to its exceptional 
performance in predicting CQI values. This emphasis on 
spatial awareness highlights the model's adaptability. It 
signifies its potential to elevate the reliability and effectiveness 
of intelligent transportation systems by providing insights into 
the intricate spatial dynamics of vehicular communication 
networks. 
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