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Abstract—Non-orthogonal multiple access (NOMA) is con-
sidered as an emerging technology to improve the spectral
efficiency performance for 6G networks. Ambient backscatter
communication (BackCom) is another promising solution owing
to its advantages in increasing spectral and power efficiency. The
investigation of integrating NOMA with BackCom is conducted
to enhance the connectivity of the emerging 5G low-powered
Internet-of-Vehicles (IoVs) and future 6G transportation systems.
This study proposes an optimal resource allocation scheme for
the NOMA-assisted BackCom IoV network. Specifically, multiple
Road-Side Units (RSUs) are considered sending superimposed
signals to the subscribed IoVs in the downlink NOMA. BackCom
tags are considered to transmit data symbols to nearby IoVs by
reflecting the signals of RSUs. Thus, we aim to maximize the
total data rate performance of the NOMA-assisted BackCom
IoV network. A joint problem that simultaneously optimizes the
IoV clustering, IoV power allocation, and reflection coefficients
of BackCom tags is formulated. To solve the problems efficiently,
multiple subproblems are decomposed that can be solved using
CVX optimization tool. To validate the performance of the
proposed method, we compare it with those of state-of-the-art
benchmark schemes. Numerical results will be provided to show
the superiority of the proposed framework.

Index Terms—Backscatter communication, Internet of Vehi-
cles, non-orthogonal multiple access, resource allocation.

I. INTRODUCTION

RESOURCE allocation is crucial for improving the perfor-
mance of communication systems that inspires research

efforts. According to many researches, the future transporta-
tion will be updated to enhance safety and comfort. Lots of
applications such as autonomous driving, safety awareness,
infotainment, and road traffic management are developed.
The upcoming sixth-generation (6G) transportation networks
will employ modernest wireless technologies that serve se-
cure data sharing, ubiquitous connectivity, rapid computation,

and energy-efficient transmissions. Compared to the fifth-
generation (5G) Internet of Vehicles (IoVs), 6G ones will
concentrate on ensuring the sharing of more detailed traffic in-
formation, autonomous driving reliability, Virtual Reality (VR)
and Augmented Reality (AR)-based traffic services, gaming
applications, and advanced multimedia. 6G IoVs will have
very high data rates. The reliability of the packet delivery has
to reach a new high level with super low latency. These chal-
lenges motivate researchers to work on advanced technologies
such as blockchain technology, terahertz communications, re-
configurable intelligent surfaces, backscatter communications
(BackCom), and Non-orthogonal Multiple Access (NOMA)to
promote reliable communications of 6G systems.

First, connecting massive IoVs in 6G would be a big
challenge owing to limited energy and spectral resources.
In this regard, BackCom and NOMA are two emerging
candidates. Without changing in the Radio-frequency (RF)
signal, BackCom technology enables IoVs and roadside-unites
(RSUs) to reduce the consumed power, hence providing a
green solution. The key of BackCom technology is to enable
a BackCom tag to transmit data by reflecting and modulat-
ing incident RF signals. Additionally, NOMA is extensively
utilized in the 6G systems to increase the access capacity.
NOMA can accommodate multiple IoVs to simultaneously
transmit data using the same spectral/time resources. NOMA
first superimposed multiple signals at the transmitter side over
the same resource block using power domain and then using
successive interference cancellation (SIC) technique at the
receiver side to decode the superimposed signals. Recently,
many researches have proposed NOMA-based frameworks. In
particular, several studies have investigated the integration of
BackCom with NOMA to improve the energy efficiency and
reliability for vehicular networks.
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II. SYSTEM MODEL

As illustrated in Fig. 1, NOMA Backscatter IoV networks
are considered, each of which comprises of multiple roadside-
unites (RSUs), backscatter tags, and many internet of vehicles
(IoVs) with various mobility. This study focuses on the ef-
ficient communication for downlink data transmissions from
RSUs to IoVs under NOMA and BackCom. First, NOMA
is adopted because of its benefit in improving the wireless
capacity and spectral efficiency. Specifically, each RSU su-
perimposes multiple intended signals and subsequently sends
the composite signal to the IoVs. Additionally, BackCom tags
are adopted to support the low-power communications and
improve the energy efficiency. By receiving the incident sig-
nals from RSUs, BackCom tags harvest energy for modulating
information and reflecting it towards the IoVs. Furthermore, in
order to make the network model more realistic, the mobility
of IoVs is considered.

Without loss of generality, it can be assumed that the RSU
and tag deployments are fixed. For simplicity, each RSU is
with one tag so that all RSUs and their corresponding tags can
be co-specified by k ∈ K = {1, . . . ,K}, where K denote the
number of RSUs/tags. Let M denote the number of IoVs and
the IoVs can be specified by m ∈ M = {1, . . . ,M}. While
IoVs moving, they change the network topology including
the IoV-RSU distances as well as antenna gain, resulting in
significant variations of the channel state information (CSI).
In this work, all IoVs are assumed to only move inside
the network model. The mobility of each IoV m can be
characterized by (dm, vm), where dm and vm describe the
moving direction and speed, respectively. Let D = {1, . . . , D}
and V = {1, . . . , V } denote the sets of moving directions
and speeds, respectively. Here, the moving directions and
speeds specified by the values in D and V , respectively, are
corresponding to several predefined directions and speeds, e.g.,
moving forward, backward, left, and right (directions), and
slow, normal, and fast (speeds). Considering that the network
operate during T time slots, the IoV mobility can be modeled
as a Markov chain model. Specifically, at each time slot,
the mobility jumps from an observed state to another state
under various transition probabilities. Within the scope of this
study, these transition probabilities are assumed to be well-
known, which can be easily obtained per specific locations.
For instance, in the long way, the IoV mobility mostly remains
unchanged while it usually varies at the intersections because
of the cross flows and traffic lights.

According to the Third Generation Partnership Project
(3GPP)’s NOMA standardization for Long Term Evolution
(LTE) [1] and 5G New Radio (NR) [2], two users are allowed
to share a NOMA channel. Thus, each RSU will select
two among several existing IoVs for performing NOMA.
Considering RSU k, let two IoVs, m and n (m < n),
are selected. Then, the IoV grouping (clustering) of IoVs
m and n under RSU k is characterized by xk,m = 1 and
xk,n = 1, respectively, while the other IoVs are non-served,
i.e., xk,o = 0, ∀o ∈ M|o ̸= m, o ̸= n. The composite signal

of RSU k for its selected IoVs, m and n, is expressed as

sRk =
√
Pkυk,mαm +

√
Pkυk,nαn, (1)

where Pk is the transmit power of RSU k, υk,m and υk,n are
the power allocation of RSU k for IoVs m and n, respectively
(υk,m + υk,n = 1), and αm and αn are the information
symbols of IoVs m and n, respectively. Each backscatter tag
k delivers a reflection coefficient, denoted by νk, by adjusting
its impedance value. The reflected signal from backscatter tag
k is a double-path signal, which is computed as

sBk =
√
νkgk,ks

R
k αk, (2)

where gk,k is the channel gain from RSU k to its corre-
sponding backscatter tag k and αk is the information symbol
modulated by backscatter tag k.

The IoVs m and n receive both of the composite signal
from RSU k and the reflected signal from backscatter tag
k, in addition to the inter-RSU interference and noise. Here,
the inter-tag interference is neglected because backscatter tags
are composed of passive RF components only. Therefore, the
signals received at IoVs m and n can be computed as

sm =
√
gk,msRk +

√
hk,msBk +

K∑

k′=1,k′ ̸=k

√
gk′ ,msR

k′ +N0,(3)

sn =
√
gk,ns

R
k +

√
hk,ns

B
k +

K∑

k′=1,k′ ̸=k

√
gk′ ,ns

R
k′ +N0,(4)

where gk,m and hk,m are the channel gains of IoV m from
RSU k and backscatter tag k, respectively, gk,n and hk,n are
the channel gains of IoV n from RSU k and backscatter tag
k, respectively, gk′ ,m and gk′ ,n are the inter-RSU interference
channel gains from RSU k

′
affected to IoVs m and n,

respectively, sR
k′ is the composite signal of RSU k

′
, and N0

is the white Gaussian noise with variance σ2.
For downlink NOMA, the worse users decode their signals

considering other signals as noise while the better users can
apply SIC to decode their desired signals after subtracting the
worse users’ signals [2]. Without loss of generality, it can be
assumed that IoV m receive the better channel condition from
RSU k compared to IoV n, i.e., gk,m ≥ gk,n. Then, the signal
to interference plus noise ratio (SINR) of IoVs m to decode
the signal of user n can be expressed as

Φn
k,m =

Pkυk,n

(
g2k,m + νkg

2
k,kh

2
k,m

)

Pkυk,m

(
g2k,m + νkg2k,kh

2
k,m

)
+

K∑

k′=1,k′ ̸=k

Pk′ g2
k′ ,m

+ σ2

,

(5)
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Fig. 1. An illustration of NOMA Backscatter IoV networks.

where Pk′ is the transmit power of RSU k
′
. The SINRs of

IoVs m and n to decode their own signals are computed as

Φm
k,m =

Pkυk,m


g2k,m + νkg

2
k,kh

2
k,m



K

k′=1,k′ ̸=k

Pk′ g2
k′ ,m

+ σ2

, (6)

Φn
k,n =

Pkυk,n


g2k,n + νkg

2
k,kh

2
k,n



Pkυk,m


g2k,n + νkg2k,kh

2
k,n


+

K

k′=1,k′ ̸=k

Pk′ g2
k′ ,n

+ σ2

.

(7)

It is worth noting that RSUs are allowed to simultaneously
serve at most two IoVs. Then, there exists one or some RSUs
serving one IoV in the proper time. For instance, when there
is only one IoV with an RSU, e.g. IoV m with RSU k, the
RSU k can serve IoV m only. Then, the SINR to decode
IoV m’s signal can be computed as Φm

k,m in formula (6)
that considers the inter-RSU interference and white Gaussian
noise only. Let Λk ∈ {0, 1, 2} denote the number of IoVs
served by RSU k, which is counted as Λk =

M
m=1 xk,m.

Applying Shannon’s formula for the information capacity of
a communication channel, the data rate of RSU k can be
computed as

Ξk =




0 if Λk = 0,
M

m=1

xk,m log2(1 + Φm
k,m) if Λk = 1,

M−1
m=1

M
n=m+1

xk,mxk,nΥk,m,n if Λk = 2,

(8)

where Υk,m,n = log2(1 + Φm
k,m) + log2(1 + Φn

k,n). The data

rate of RSU k can also be written as

Ξk = 1{Λk=1}

M
m=1

xk,m log2(1 + Φm
k,m)

+ 1{Λk=2}

M−1
m=1

M
n=m+1

xk,mxk,nΥk,m,n, (9)

where 1{∗} is a binary indicator, i.e., 1{∗} = 1 if (∗) is true
and otherwise 1{∗} = 0. In formula (9), the first term is the
achievable rate for a potential solely served IoV while the
second term is that for paired IoVs.

III. PROBLEM FORMULATION

On the one hand, we aim to maximize the achievable
data rate for all RSUs, which can be strictly affected by
many variables, such as the IoV clustering, power allocations
for IoVs, and reflection coefficients of backscatter tags. It
is impossible to achieve the optimal data rate by separately
optimizing these variables. On the other hand, because of the
dynamic nature of IoV systems, it is reasonable to perform
the long-term optimization. As a result, this study investigates
a joint optimization problem of the IoV clustering, power
allocations for IoVs, and reflection coefficients of backscatter
tags to maximize the overall long-term data rate of all RSUs.
Then, the corresponding problem is mathematically formulated
as follows:

max
x(t),u(t),v(t)

T−1
t=0

K
k=1

γtΞk(t), (10)

s.t. xk,m(t) ∈ {0, 1}, ∀k ∈ K,m ∈ M, (10a)
M

m=1

xk,m(t) ≤ 2, ∀k ∈ K, (10b)

0 ≤ υk,m(t) ≤ 1, ∀k ∈ K,m ∈ M, (10c)
0 ≤ νk(t) ≤ 1, ∀k ∈ K, (10d)
Φn

k,m(t) ≥ Φmin, ∀k ∈ K,m, n ∈ M|m < n,

xk,m(t) = xk,n(t) = 1, (10e)
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where x(t) = {xk,m(t)|k ∈ K,m ∈ M} is the IoV clustering
vector, u(t) = {υk,m(t)|k ∈ K,m ∈ M} is the power
allocation vector, v(t) = {νk(t)|k ∈ K} is the reflection
coefficient vector, γ ∈ (0, 1) is a discounting factor, and Φmin
is a threshold SINR that is predetermined to guarantee the
succeed of SIC decoding. Constraints (10a) and (10b) ensure
that at most two IoVs are allowed to be active with each RSU.
Constraint (10c) sets the range of power allocations which
should not exceed the transmit power of the RSUs. Similarly,
constraint (10d) describes the range of reflection coefficients
that take values from 0 to 1. Finally, constraint (10e) enables
the lower bound of SINR for efficient SIC decoding to enhance
the quality of service (QoS).

IV. ALGORITHM DESIGN

It can be observed that the formulated problem is a mixed-
integer nonlinear programming problem, which cannot be
solved straightforwardly because of the mixed binary and nu-
merical variables in addition to a nonlinear objective function.
Therefore, we decompose the joint problem into subproblems
of IoV clustering, power allocation, and reflection coefficient.
In the following subsections, a novel algorithm is presented
that iteratively obtains the optimal IoV clustering, power al-
locations, and reflection coefficients. In particular, the optimal
IoV clustering is trained using deep neural networks while
the optimal power allocations and reflection coefficients are
obtained using convex optimization tool.

A. Finding The Optimal Power Allocations

Considering that the IoV clustering and reflection coef-
ficients are given, we aim at finding the optimal power
allocations. First, the formulated optimization problem is
transformed to the power allocation problem at each time slot.
We consider the power allocation problem in the following
cases.

1) If Λk = 1 with xk,m(t) = 1: Ξk(t) becomes a
logarithmic function as

Ξk(t) = log2

(
1 +

Ak,m(t)υk,m(t)

Bk,m(t)

)
. (11)

It is monotonically increasing with respect to υk,m(t).
Therefore, the optimal value for υk,m(t) is expressed as

υ∗
k,m(t) = 1. (12)

2) If Λk = 2 with xk,m(t) = xk,n(t) = 1: The data rate of
RSU k is computed as

Ξk(t) = log2

(
1 +

Ak,m(t)υk,m(t)

Bk,m(t)

)

+ log2

(
1 +

Ak,n(t)υk,n(t)

Ak,n(t)υk,m(t) +Bk,n(t)

)
.

(13)

The power allocation problem is convex so that it can
be solved using CVX optimization tool [3].

B. Finding The Optimal Reflection Coefficients
Considering that the IoV clustering and power allocations

are given, we aim at finding the optimal reflection coefficients
of backscatter tags. At first, we transform the formulated
problem to the reflection coefficient problem at each time step.
We consider the reflection coefficient problem in the following
cases.

1) If Λk = 1 with xk,m(t) = 1: Ξk(t) becomes a
logarithmic function as

Ξk(t) = log2

(
1 +

Dk,m(t)νk(t) +Ek,m(t)

Bk,m(t)

)
. (14)

It is monotonically increasing with respect to νk(t).
Therefore, the optimal value for νk(t) is expressed as

ν∗k(t) = 1. (15)

2) If Λk = 2 with xk,m(t) = xk,n(t) = 1: The data rate of
RSU k is computed as

Ξk(t) = log2

(
1 +

Dk,m(t)νk(t) +Ek,m(t)

Bk,m(t)

)

+ log2

(
1 +

Dk,n(t)νk(t) +Ek,n(t)

Fk,n(t)νk(t) +Gk,n(t) +Bk,n(t)

)
.

(16)

The reflection coefficient problem is also convex so that
it can be solved using CVX optimization tool [3].

C. Training The IoV Clustering Using Deep Neural Networks
Even when the optimal power allocations and reflection

coefficients are given, the formulated problem remains hard
to solve because searching for the optimal IoV clustering
often requires exponential time. Therefore, we approach to
approximate the optimal IoV clustering using deep neural
networks. The weight matrix of neural networks is reinforced
in a training process, where an agent is recruited to control
the IoV clustering. As the mobility is considered, the decision
epoch of the agent is per time slot. The agent can observe
sum rate every time it decides an IoV clustering action. At
first, the agent needs to collect data sufficient for training via
the interaction with network environment. Channel coefficients
are collected as the input. A fully connected neural network is
designed that employs two hidden layers with ReLU activation
function that will make final output decision.

V. CONCLUSIONS

In this study, we propose an optimal resource allocation
scheme for NOMA-assisted BackCom IoV networks. The
objective is to maximize the achievable long-term data rate by
jointly optimizing the IoV clustering, IoV power allocation,
and reflection coefficients of BackCom tags. The formu-
lated problem is hard to be solved straightforwardly. We
decompose the original problem into subproblems, which is
convex that can be solved using CVX optimization tool. For
IoV clustering, we approach with a deep neural network to
train an optimal clustering policy. Simulation results will be
provided to demonstrate the reliablility and effectiveness of the
proposed framework compared to the benchmark schemes.
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