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Abstract—Recent technological advancements have led to a
significant increase in the use of wireless communication for
data transmission, particularly in sensor networks and device-
to-device communications, necessitating not only rapid but also
reliable data exchange. In conventional wireless communication,
if a packet is lost in transmission due to retransmission, it is
retransmitted. In this case, the subsequent packets will wait for
them so that the order of the packets is not reversed, which is
called Head of Line (HOL) Blocking. This problem can lead to
overall transmission delays and losses, and is one of the reasons
for inconsistent data transfer times. In this paper, we propose
a technique to significantly reduce the retransmission rate of
the sender and data loss by retransmission using Generative
Adversarial Net (GAN). To evaluate the performance of this
study, we applied our technique to a portion of SolarCube solar
data assuming that it was corrupted, such as NaN processing,
value change, and sign change, and the average recovery rate was
92.36%, demonstrating that it is possible to detect and recover
losses in the data transmission process. This research is expected
to have applications in data loss detection and recovery during
transmission of time series data.

Index Terms—Wireless Communication, Data Transmission,
Time Series Data, Data Preprocessing, Data Restoration

I. INTRODUCTION

Recent advances in computing technology have increased
the speed of wireless communication and improved the per-
formance of sensors that collect data, resulting in an increasing
number of services using wireless networks. However, com-
pared to wired communication, the speed of data transmission
in wireless communication is not consistent due to various
external factors or physical factors such as obstacles and
weather conditions, and this leads to possible data loss. As a
result, various techniques are proposed to address the problems
caused by time lags across data [1].

In order to minimize the time delay in the transmission
process, this paper proposes a technique to reduce the retrans-
mission rate by detecting the loss in the transmission process
of data and restoring the lost data using GAN, which performs
inspection and restoration based on training data. [2].

II. RELATED WORK

GAN is a learning method using a Generator Model [3] (G
Model) and a Discriminator Model (D Model). This uses the
concept of ”competition” in the GAN framework, where the
D Model learns to determine whether the input sample data
is the sample data generated by the G Model or the actual
training data distribution. At this time, the G Model creates an
authentic model to deceive the D Model based on the training
data, and conversely, the D Model judges whether the input
data is true or false to improve its ability through adversarial
learning [4].

GANs can determine whether input data is correct based
on fake data and training data, and can be used for restoration
to recover missing and corrupted data [5]. GAN’s restoration
technology also allows for adversarial learning of the G and
D models, where the G model restores the corrupted data to
resemble the actual data and the D model determines if the G
model is restored to the point where it resembles the original.

III. DATASET AND GAN MODELING

A. DataSet for Training GAN
The purpose of this paper is to apply the collected solar

data to loss restoration in wireless communication, and to
take advantage of the advantages of GANs specialized in loss
restoration, we preprocess the data set of this study, which is
a two-dimensional time series data [6].

Table 1 describes the Solar Cube solar data used as training
data for this study. The data is a time series and was recorded
in hourly increments from October 2015 to March 2023.
Before using the data for the study, we preprocessed the data
to ensure that there are no outliers or unnecessary data in
the measured data. Table.1 describes the parameters of the
training data used in this study, and Fig.1 is a graph of solar
data representing the measured values of those parameters over
time.

When checking the distribution of the solar data in Fig.1,
we can see a significant decrease in DC voltage (V) in some
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Fig. 1. Solar Power Generation Dataset

Fig. 2. DC Voltage(V) distribution by time zone

parts, and we first checked whether it is an outlier or a natural
value. Fig.2 is a graph showing the time of day when values of
DC Voltage (V) deviate significantly from the average value.
When we checked this, we found that this was largely the
case at 6∼8 and 17∼19. It can be seen that the solar power
generation time of the solar cube, which is the source of data
for this study, ranges from 5∼19 o’clock depending on the
season, with less power generation at the beginning and end
of the day and a large variation from day to day, resulting
in a momentary decrease in the value of DC Voltage (V) at
that time. Therefore, we believe that the dataset is a natural

TABLE I
DESCRIPTION OF SOLAR POWER GENERATION DATA PARAMETERS

Column Description Units
Date Time and date of data recording Date/Time
AC Voltage Voltage output of the solar panels V
AC Current Current output of the solar panels A
DC Power Power received by the inverter kW
DC Voltage Voltage received by the inverter V
DC Current Current received by the inverter A

phenomenon and used it as a training dataset.

B. GAN Modeling

This section describes the modeling of a GAN that will learn
the data before experimenting with techniques that allow the
sender to recover from losses without retransmissions, making
it similar to the original data. The training data used in this
study is a two-dimensional time series graph, allowing us to
apply the benefits of GANs from Section 2.

First, we need to normalize the data, and since the scale
difference between the measurements in the prepared data is
large and the percentage of outliers is low, we used the Min-
Max normalization method. This is a feature scaling method
that changes the feature value between 0 and 1, which reduces
the overfitting phenomenon due to the size of the value and
makes the model perform better.

xscaled =
x− xmin

xmax − xmin
(1)

The key to modeling is to use GANs to generate time
series data. The GAN model consists of two main compo-
nents: a Generator and a Discriminator. This was chosen after
conducting the following experiments to build up the model
layers and use the appropriate activation function as the two
elements progress. Fig.3 shows the change in loss per epoch
after applying LeakyReLU, ReLU, sigmoid, tanh, and ELU to
this learning model. study [7], [8].

sigmoid(x) =
1

1 + e−x
(2)

tanh(x) = 2σ(2x)− 1 (3)

ReLU(x) = max(0, x) (4)

LeakyReLU(x) = max(0.01x, x) (5)

ELU(x) =

{
x if x > 0,

α(ex − 1) if x ≤ 0.
(6)

The key principle of GANs lies in the competitive nature of
its architecture, where the fake data produced by the generator
fools the discriminator well and conversely the discriminator
learns to make better judgments, is ideal and can determine
that a model is not suitable if it becomes too strong early
on in training or if its performance evaluation shows large
deviations. Therefore, among the activation functions tested,
we can see that LeakyReLU and ReLU outcompete each other
longer than other activation functions and learn the model well,
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Fig. 3. Performance Comparision of Activation Fuction

and furthermore, LeakyReLU does not show significant partial
loss instability compared to ReLU, and we finally selected
LeakyReLU for stable learning.

• Generator takes a noise vector in latent space as input
and generates time series data that mimics the solar data
used as training data. The model consists of two Dense
layers, and the activation function used is the LeakyReLU
function. The first Dense layer takes the noise vector from
the latent space as input, maps it to a higher dimensional
feature space, and applies a nonlinear transformation
using LeakyReLU. The output layer then uses the tanh
function to reconstruct the output in the form of time
series data.

• The Discriminator is composed of two layers, the Flatten
layer and the Dense layer. We start by converting the
time series data to a one-dimensional vector in the Flatten
layer to make it easier for the Discriminator to process.
The Dense layer is then used to determine whether the
input time series data is real or fake. The model was also
run with LeakyReLU, and in the end, the output layer
uses a sigmoid function to determine that the closer it is
to 1, the more authentic the input data is.

IV. PERFORMANCE EVALUATION

Based on the modeling in Section 3 of this thesis, the model
was trained using the train set and then evaluated using the
test set. For the evaluation analysis of the model, the following
losses were assumed for restoration due to data loss in wireless
communication, which is an application situation.

• ”Data Missing” means that the data was lost in transit,
and we assume that a portion of the test set is NaN,
meaning that some of the columns at that time are
missing. We did this for 30% of the test set.

• ”Data Corrupted” assumes that no existing data is missing
due to data loss, but that various tampering has occurred,
such as broken values or positive values having negative
values. We did this for 30% of the test set.

• ”Data Inconsistent” is an inconsistency in the data, which
assumes that if the data sent was an integer, it was also an
integer when it was received, but with a different value,
or that there was an outlier that didn’t fit at that time.
We did this for 40% of the test set. This is a relatively
common type of data loss, and we’ve weighted it heavily
toward the more common types.

We conducted experimental evaluation of restoration for
Data Missing, Data Corrupted, and Data Inconsistent under the
above loss assumptions. Fig.5 shows the breakdown of each
loss type for Mean Squared Error (MSE) and Mean Absolute
Error (MAE), the numerical evaluation metrics selected for the
experimental evaluation.

First, MSE is the squared average of the difference between
the predicted and actual values, which is used in this study
to measure how close the overall reconstructed data is to
the original data and to assess the sensitivity to large errors
that may occur during the reconstruction process. The MSE
measurements resulted in 0.09903, 0.04752, and 0.061595,
respectively, and were analyzed as follows. Among the three
types of data loss, Data Missing was the highest when ana-
lyzed by MSE, indicating that NaN data was more difficult
to restore than other types. This indicates that the error in
restoration was relatively large. On the other hand, Data
Corrupted was the lowest, indicating that the sign of the value
changed during data tampering, and the error in restoration
was relatively low, which is a significant result compared to
other loss types.

MAE is an index that averages the absolute difference
between the reconstructed value and the true value and was
used to calculate the true reconstruction rate and to evaluate
the technique proposed in this study. The MAE measurements
were 0.08038, 0.052488, and 0.048361, respectively, and the
analysis results are as follows. In terms of MAE measurement
results, the overall result is relatively high for the Data Missing
part, such as MSE, but the MAE of Data Inconsistent is
similar to Data Corrupted, so you can see that the evaluation
of the restoration is good overall when the actual restoration is
performed due to the characteristics of MAE that are relatively
less affected by errors, and you can see that the error rate of
some data is large.

Fig.4 is a graph showing the distribution of restoration
rates after restoring each type of loss, where the x-axis is the
restoration rate (%) and the y-axis is the number of restored
data corresponding to that restoration rate.

RestorationRate = 1−MAE (7)
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(a) Data Missing (b) Data Corrupted (c) Data Inconsistent

Fig. 4. Data Restoration Rates by Type

Fig. 5. MSE and MAE Results by Data Loss Type

In our analysis, we found that Data Missing sometimes has a
recovery rate as low as 30%, with an average performance of
70 to 90%. Data Corrupted shows a minimum of 50% recovery
rate and overall better performance. Data Inconsistent has the
best restoration rate of the data loss types assumed in this
study, with a distribution that stays around 90% on average.

The average restoration rates are 90.23%, 93.12%, and
93.73%, respectively. As the GAN-based modeling in this
study shows a restoration rate of more than 90% for each
type of data loss, we can confirm that the two-dimensional
time series data, which is the solar data used in this study,
is applicable to the restoration of GANs, and we can show
the applicability of how to reduce the retransmission rate of
the transmitter based on the detection of lost data in the data
transmission process and the significant restoration results.

V. CONCLUSION

In this study, we proposed a recovery method for time
series data loss in wireless communication by applying GAN.
The proposed method showed an average restoration rate
of 92.36% for the missing, tampered, and lost scenarios of
solar data, and demonstrated its applicability to loss detection
and recovery of real-world situation. The implication of this
study is that GAN has a high performance guarantee and

applicability for the application of time series data restoration,
and it shows excellent performance in determining whether
the received data is lost or not. However, the restoration rate
and deviation from it are different depending on the type of
loss, so it is possible to improve the performance based on the
difference in GAN modeling suitable for each, or to apply it to
various loss situations in real life, although virtual simulation
of loss was conducted in this study, so higher performance
improvement and applicability can be expected.
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