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Semantic Communications

Teacher

Apprentice

Transmitter Receiver
BS BSCloud

Transmitting semantic-agnostic bits
limited by Shannon’s theory (1948)

Sending semantic representations
as a machine language (better use of capacity)

Encoding Decoding

Minimally representing
the meaning Computationally 

generating the data

Analogy to
human 

communicationConveying “semantics” or meaning as per  
Weaver, can help us “do better”

But what does “semantic” even mean for a 
communication network?

What is the “semantic” of “semantics”?
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Key Characteristics of Semantic Representations 
and a Semantic Language

• Minimalism
 The capability of 

characterizing the structure 
found in the information with 
the least number of 
language elements possible

 Reduction of the number of 
exchanged messages in the 
long run as well.

• Generalizability:
 Representing a particular 

underlying structure (or 
understanding one at the receiving 
end) while being invariant to 
changes in: a) distribution, b) 
domain, and c) context.

 This mimics the behavior of a 
natural language to universally 
use words to describe events.

• Efficiency:
 The ability of the apprentice to 

re-generate the information 
with high fidelity, in the least 
time possible. 

 The resolution of the data 
generated at the apprentice must 
be equal (or better) to that which 
could be recovered by a classical 
receiver.
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Semantic Communication Systems: The Bigger Picture

Semantic Communication
Backbone 

A map between a 
stream of raw data 

bits and their 
respective semantic 

representation.

Semantic 
language • Learn a language by identifying 

the root-causes of information.
• Generate semantic content and 

make logical decisions.

Reasoning via
Causality

Novel metrics that can 
evaluate the performance of 

semantic networks by 
characterizing the intrinsic 

reasoning and level of 
symmetry of the SC system

Semantic-
based KPIs

Minimal 
representations, yet 
expressive and can 

capture the semantic 
structure of the data. 

Minimally sufficient 
representation

The efficiency of SC grows 
substantially with the ease, 

dynamicity, and availability of 
computing resources

Computing 
resources
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(Some) Benefits of Semantic 
Communications

Less Data, 
More Knowledge

AI-Nativeness
and 
Interoperability 

Intrinsic Contextual 
Awareness

Robust/Resilient 
Channel Control
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What is (is not) Sematic 
Communication Systems?

Is Is not

Application -aware 
communications 

Unlike app-aware communications, 
SC captures structure, context and 
attributes a representation to the 
data at a low-level, that is beyond 

application level information.

Path to knowledge -
driven AI -nativeness
By attributing meaning and 

context (via a representation) 
to the latent bit-pipeline.

Data compression 
(source coding)
Unlike data compression, SC 

leverages the memory of observations 
to ultimately learn structure, reuse it, 

and infer logical decisions.
Reasoning -based 

system
Leverages causality and  

associational relations in the data 
to learn a representation and 

communicate it.

Symmetric 
Communications

In contrast to a passive receiver that 
merely reconstructs the conveyed 
message, an apprentice must be 
able to generate content from a 

representation.

Goal-oriented 
communications

SC is beyond goal oriented whereby 
the transmitter and receiver must 

have cooperative or competing goals 
with respect to an environment.

Semantic 
Communication

Systems
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Step 1 - Disentangling Meaning/Semantics

Xl,i

Xm

Semantic 
Language

Zi

Yi
Dog Siberian 

HuskySemantic Content Elements

Learnable Data
Semantic Representation

Transmitted 
semantically

Transmitted 
classically

Memorizable Data
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Semantic Language: From Entropy to
Language Complexity

A semantic language        is a dictionary (from a data structure perspective) that 
maps the learnable data points Xl,i to their corresponding semantic representation Zi, based 
on the identified semantic content elements Yi.

Cross Entropy loss
Kolmogorov complexity

• Capture the fitness of the representation in expressing the content elements and the Kolmogorov
complexity of the model built.

• Complexity too high Service content is of complex structure OR Xl and Xm separation performed poorly.
• Kolmogorov complexity enables characterizing the individuality of the semantic content elements.
• The structure function achievable by a model p for a language     is given by:

• The structure function tends to zero for sufficiently high complexity  data tends to purely random 
information that lacks structure very difficult learning task  easy memorization task.

• Achieving structure – complexity tradeoff via optimization
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Christina Chaccour and Walid Saad

Key Result: Disentangling Learnable and 
Memorizable Data via Contrastive 

Learning for Semantic Communications

Published in the Proceedings of the 56th Asilomar Conference on Signals, Systems, 
and Computers, Pacific Grove, CA, USA



11

Simulation Results
 This work uses contrastive learning to perform 

the pre-processing/disentanglement process
 We can see that the average representation 

length increases with the content complexity:
o For a low content complexity, semantically transmitting 

all the data might result in a smaller representation 
length. This is because the amount of random 
information   Xm is considerably small.

o As we ↑ the content complexity  Semantically 
transmitting all the data is not a feasible approach 
Representation length steeply increases as we 
increase the content complexity.

o Our representation is minimized by 57.22%
compared to the vanilla semantic approach.

 Now that we know how to disentangle 
information, let’s go deeper into reasoning and 
causality
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Christo Thomas, Christina Chaccour, Walid Saad, Merouane Debbah, and 
Choong Seon Hong

Causal Reasoning: Charting a Revolutionary 
Coursefor Next -Generation AI -Native Wireless 

Networks

Under review: https://arxiv.org/pdf/2309.13223v1.pdf
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Fundamentals of Causal Reasoning

Some key take-aways
• Causality can be the basis for future AI-native wireless networks
• Enabler of several applications (beyond semantics)
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Step 2 - Causal Reasoning: Why?
● Reasoning and “real” learning can only be performed by asking 

questions Queries (counterfactuals and interventions), the 
emerging framework of causality enable this.

● Reasoning mainly relies on characterizing causal and associational 
logic in the data.

● We cannot rely on state-of-the-art ML frameworks that make 
assumptions such as:
 i.i.d. datasets
 Stationarity scenarios
 Data has no root-cause 
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Reasoning 
Congregating associative, interventional, and 
counterfactual logic to understand the representations 
conveyed and generate representations with their proper 
semantic connotation.

Associative Logic
Learning information based on purely statistical relationships 
without invoking any causality or semantics within the data. 
This is a purely observational task on the datastream.

Interventional Logic
Learning while invoking questions with the do operator. 
That is, the apprentice is attempting to learn what would 
happen in case the causes were different. In other words, 
the apprentice is asking “What if?”. “What would the 
representation be if the semantics were different?”

Counterfactual Logic
Learning with retrospection and imagination. The apprentice is 
attempting to ask the “Why?” questions  when it comes to the 
current representations used by the teacher and their respective 
semantics. “What is the root cause of a particular 
representation?”

Associations1

Interventions

Reasoning

Counterfactuals

2

4
3

Causal Logic Ladder
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Constructing a semantic language with causal reasoning capabilities requires mapping the language 
to a structural causal model (SCM)                          where                       . The learnable data can now 
be written:

Fundamentals of Causal Reasoning

Insights:
• Defining a language that can map to an SCM is a key step
 Such a language can implement counterfactuals and interventions. 

• That is the apprentice can ask questions via do-operators
InterventionsWhat if we change the cause…?
Counterfactuals Why is the current causal link leading to…?

Set of direct 
causes leading to 

Xl,i

Exogeneous variable 
 related to variability

How is causality important for semantic communications?
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Fundamentals of Causal Reasoning

Insights:
• Performing an intervention or a counterfactual on one mechanism, does not change any of the 

others. 
• Acquiring information about a specific mechanism                  does not give us any information 

about the other                . 

Causality enables disentangling semantic content elements! 
Allowing the teacher and apprentice to reason every each meaning and its 
cause separately

Building a semantic language       that can be  mapped to an SCM model enables disentangling each 
data stream and its respective representation from other established representations. In other words, 
the model describing the language can be written as:
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Fundamentals of Causal Reasoning

Insights:
• If one executes different queries (“What ifs” with the different subject), and the exact same 

learned causal model remains unchanged  The representation and subsequent semantic 
language is mature.

• This mimics the behavior of words to represent universal events in our daily lives.

How do we define a generalizable reasoning system?

A semantic representation is dubbed, generalizable, if it fulfills the general causal invariant prediction 
criterion. That is, despite different “what if”s posed on the causal model, the same representation results 
in describing its respective content elements in data:
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KPI 1: Communication Symmetry Index

Insights:
• Based on the values of and, , one can determine the level of symmetry 

between the teacher and the apprentice.
• E.g.: A high  high level of symmetry between teacher and apprentice  the 

apprentice has generative capabilities. (A high         , with low        )  reverse 
mentorship, teacher’s capabilities are also weak.

The semantic impact generated by 
a semantic

representation Zi during a time τ is 
the number of packets

that would have been needed to be 
transmitted to regenerate

the semantic content element Yi

The communication symmetry index between a teacher b and apprentice d, 
for a transmission session 𝜏𝜏 is given by:

Number of query 
packets (e.g., 
interventions, 

counterfactuals, 
etc.) needed to 

reason Number of raw data 
packets accompanying 

semantics
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KPI 2: Reasoning Capacity

The total capacity is no longer limited by Shannon’s bound only as a result 
of the convergence of computing and communications!

The reasoning capacity between a teacher b and an apprentice d is given by:

Maximum Computing 
Resources


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Christo Thomas and Walid Saad

Key Result: Neuro -Symbolic Causal 
Reasoning Meets Signaling Game for 
Emergent Semantic Communications

IEEE Transactions on Wireless Communications, to appear, 2023 :  
https://arxiv.org/abs/2210.12040

https://arxiv.org/abs/2210.12040
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Reasoning Semantic Communication System: Overview

Representation space

Syntactic space

• How to build the 
language => game theory

• KPIs => category theory
• How to reason over the 

data (teacher) and 
generalize (apprentice) 
=> neuro-symbolic AI + 
generative flow networks
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Proposed ESC System: Addressing the Challenges

 Compute teacher transmit strategy 
(encoder) - and apprentice 
inference strategy (decoder) –

Language Problem Causal Reasoning Problem

 Infer the hidden relations among the entities 
(the causal sequence that best explains the 
event observed) Parent nodes

in the graph

Set of 
logical formulas

LanguageKnowledge

Emergent Language (communicating 
language emerges) 

 transmitting semantically similar messages as 
same signal thus saving bits/BW

 removing redundant semantics 

Encode based on semantics, benefits 

Semantic state descriptor:

Apprentice semantic reasoning:

 evaluate the logical formulas
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Two -Player Signaling Game

Teacher objective

Apprentice wants to

Computing or Communication costs
Apprentice surprise (to 
minimize)

Transmit less

Extract more

Semantic notion of information

[1] R. Carnap and Y. Bar-Hillel, “An Outline of a Theory of Semantic Information,” Technical Report No. 247, Oct. 1952.

 "Category theory to define semantic information: A more general approach compared to set-theoretic
methods [1], and it can represent deductive and logical theorem proving properties
 Syntax category ( ℒ ) – category of state descriptions (entity or entity-relations).
 Semantic category (category of copresheaves of all state descriptions part of (ℒ) – represents plausible

logical conclusions that entail from any state description. Represented as the functor ℱ:ℒ → ℒ̂.

𝑉𝑉 𝜋𝜋𝑠𝑠,𝑡𝑡 ,𝜋𝜋𝑙𝑙,𝑡𝑡 = 𝑐𝑐 𝒖𝒖𝑡𝑡 − log𝜋𝜋𝑙𝑙,𝑡𝑡
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Semantic Information and Surprise

• "Semantic surprise" tells us that the informational value of a communicated 
message is a function of the degree to which the content of the message is 
surprising to its recipient.
 Emergent language constructed ensures that teacher transmit policy (that maps the 

causal state to a semantic representation that gets transmitted) obeys: transmitting 
zero or minimal bits when the extracted causal state does not offer new semantic 
information or is easily predictable (which in turn means the apprentice is less 
surprised).

An illustration of copresheaves for “red”

• Using category theory, we can describe the transmit semantic information as the 
information contained in the logical entailments (copresheaves from category 
theory perspective) that follow from any causal state description. 

• Received semantic information: given that receiver estimated �𝒛𝒛, the semantic 
similarity (≤ 1) can be computed by quantifying the overlap in terms of the 
copresheaves of actual 𝒛𝒛 and �𝒛𝒛. So semantic information reconstructed will be a 
fraction (=semantic similarity) of the transmitted information.

Semantic surprise:

Category theory and semantic information
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Nash Equilibrium Analysis

• Theoretical results on the derivation of the Nash equilibrium
 Pooling equilibrium                  and separating equilibrium (            ), not of interest 

for ESC.

 Partial pooling is realistic  listener extracts max. semantic information when the 
speaker partition its semantic category space into a Voronoi tessellation, (each       
=> distinct partition). Optimal strategies below:

Speaker – Transmit signal partition

Voronoi tessellation
of syntactic space s.t. avg.
semantic info. extracted at
listener is maximum among all
possible partitions.

Not in the Euclidean space but in 
the semantic space!

Listener
Decoding Strategy: Bayesian estimator
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Potential Gains of ESC vs Classical 
Wireless : Reduced Bits

• Theorem 1: For a particular syntactic space,       and context distribution          
over     , the average amount of bits to represent the state description in an ESC 
system can be bounded as follows.

And for a classical communication system (which directly encodes the entities)

• Key point: for an ESC system, the lower and upper bounds for a physical 
representation of the semantics are smaller compared to a classical system justifying 
the transmission efficiency of an ESC system

Codeword length

Shannon 
entropy
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Potential Gains of ESC vs Classical 
Wireless : Improved Reliability

Theorem 2: For a given representation space     , the lower bound on the 
semantic error probability (      −representing reliability) is always less 
than or equal to the lower bound on the probability of bit error (      ) 
measure achieved using classical communication system.

Key point: Inducing reasoning + emergent language at teacher and apprentice can improve 
semantic reliability compared to a classical system that uses the same number of bits to 
communicate.

Error in  
reconstructed 

semantics
State descriptions
(or just entities) 

in classical sense 
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Simulation Results

• Number of communication rounds, decreases over time which demonstrates how the generalizable 
aspects of proposed approach help over time.

• Emergent language gives a much better reliability.
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Simulation Results

• Using ESC, the system transmits less compared to state of the art and achieves better semantic reliability
• Semantic error probability (1-reliability) is quite low for ESC compared to SotA until crossover probability 

0.3, after which performance becomes 
worse for all since the channel inverts almost half of the bits
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Christo Thomas, Walid Saad, and Yong Xiao

Key Result: Causal Semantic Communication 
for Digital Twins: A Generalizable Imitation 

Learning Approach

IEEE Journal on Selected Areas in Information Theory, to appear, 2023:  
https://arxiv.org/abs/2304.12502

https://arxiv.org/abs/2304.12502
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Causal Semantic Communication for Digital 
Twins (DTs)
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Example Use Case: DT-enabled SC for 6G ORAN

Resource efficient and real-time AI-
native communication systems

Is ORAN 6G ready?  
Answer

Service management and orchestration 
framework (non-real time RIC-AI training)

Near-real time RIC (Expert Agent - DT 
analysis)

CU (Semantics-aware imitator)

DU (Semantics-aware imitator)

RU (Semantics-aware imitator)

DT-based SC

Proposed 
Solution

6G ORAN
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Integrated Information Theory: Analytical Formulations
Intrinsic Information for State Abstraction:
•
•

Integrated information for an SCM:
•

A semantic content element (SCE) can be formally defined as an atomic mechanism, 
with possible minimum integrated information among all partitions
• A semantic concept is composed of multiple SCEs
• A suboptimal scheme (since state transition probabilities are unknown) to identify SCEs: extract the 

entities present in the data and then compute 𝐼𝐼𝜙𝜙
𝑝𝑝𝑘𝑘 for all partitions, maximally irreducible partition 

forms a concept and its constituents the SCEs.

𝑝𝑝𝑘𝑘 is the partition

𝔻𝔻 = Wasserstein distance 

SCEs
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Causal Transition Models: Structural Causal Model

• Semantic Information: uses Integrated information theory (IIT) from theory of consciousness in neuroscience
• Intrinsic Information for State Abstraction

– Cause and effect information conveyed by any 𝒔𝒔𝑖𝑖𝑡𝑡 (Impact under confounding variables as theoretical result ) 
• Information Integration (via Compositionality, for Identifying Semantic Content Elements - SCEs)

– Information conveyed by a subset of SCEs, as a whole and beyond sum of information of its parts
• Semantic concepts, causal relations among concepts, topological characterization (abstract cell complex) as a 

theoretical result
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Key Analytical Results
The error in semantic information learned between expert and imitator nodes can be 
made arbitrarily small if the learned posterior about the confounding variables has its peak 
around the true value of confounders.

The structure of causes and effects in an SCM can be represented using an abstract 
simplical complex, in which causes and effects are nodes and relations are simplices.

• Topological characterization of semantics as abstract cell complex represents 
meaning

• Seamless communication across multiple nodes, without dependency on transmit 
encoders

• Allows a rigorous formulation of semantic metrics  reliability, similarity.

Performance 
characterization

Semantics and 
Topology

• Discrepancy in transition probability modeling dominates the error in performance 
(average regret)  accurate physical environment modeling is crucial. 

• Generative AI can help to close this gap at the receiver as communication progresses.

Causal relations as 
simplical complex

Confounding 
variable estimate
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Simulation Results

– (a) Proposed CSC system significantly outperforms the maximum likelihood (MLE) baselines that uses
linear autoregressive models  improved physical model accuracy using advanced AI algorithms,
such as causal discovery

– (b) Proposed CSC system requires fewer samples to achieve the desired reliability on the test data set
compared to the SC system, which fails to leverage causality

Key Points (a) (b)
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From Data -driven to Reason -driven Wireless Networks

Human-
like 

reasoning
Data

Data-driven Reasoning-driven

Discrete elements 
(scalars, vectors, matrices, or 

databases that enable 
visualization):

E.g. QoS values, antenna 
alignment angles, fading 

coefficients, etc.
Wireless networks are 

“tied” to data.

Applied knowledge 
(higher reasoning capabilities that 
can perform logic, associations, 

and linkage):
E.g. Semantic language, neuro-

symbolic or causal structural 
models of reasoning.

Wireless networks are 
semantic-based AI-native 
and can perform versatile 

logic.

Knowledge-driven

Linked elements
(concepts, metrics that facilitate 

the design and optimization):
E.g. Information-centric 

networking, Age of Information, 
AI-augmented wireless.

Wireless networks are 
application-aware and 

quasi-autonomous.

Organized information
(AI frameworks that exhibit 

generalizability and invariance):
E.g. Meta-learning, transfer 

learning, and continual learning 
for wireless.

Wireless networks are AI-
aware with a generalizable 
intelligence (first step to 

semantic 
communications).

Information-driven
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Conclusion and Future 
Recommendations

1

Semantic 
communications may 
significantly enhance 
network performance

It is not merely a form 
of minimalism as 

existing works allude; 
it can enhance 

resilience, reliability, 
and overall capacity

of a network

2

Advances in AI 
and computing 
are necessary

More efforts needed on 
generalizable, reasoning 
and knowledge driven AI 

as well as judicious 
computing resouces

3

Semantic 
communications is 
not here to replace 

classical 
communications

Nor to solve all of its 
problems.

Memorizable
datastreams are more 

efficiently sent via classical 
channels. 

4

Less spectrum 
reliance via the 
convergence of 
computing and 

communications

This could help alleviate 
technical and regulatory 
burdens associated with 
the need to open new 

spectrum bands for 
every wireless cellular 

generation.
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Thank you
Q&A
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