
Intelligent and Robust 6G Mobile Core 

Networks

2024.01.18.
Sangheon Pack 

Korea University
(Joint work with Y. Jeon and H. Jeong)



Introduction to 5G (1/3)

2

• 5G Architecture

https://devopedia.org/5g-service-based-architecture



Introduction to 5G (2/3)

3

• Protocol Evolution



Introduction to 5G (3/3)

4

• PNF → VNF → CNF

Traditional
(Shared)

Machine Virtualization
(System isolation)

Containers
(Process isolation)



Key Characteristic of 5GC

5

Cloud Native Network Slicing Network Automation



6

But, one more important thing
in 6G core networks



Resilient 6G System (1/2)

7

• What has to be provided for resilient 6G

Strong security,
from design

to deployment
and operations

Strong privacy 
protection

Reliability,
low latency 

service

Availability, 
service 

availability/up
time

Resilience,
fast network 

recovery



Resilient 6G System (2/2)

8

• Fault Management Process

- Network traffic, 
mobility monitoring, 
CPU usage etc.

- Link packet delay, 
unexpected traffic 
loss, node failure etc.

- Inconsistent state, 
incorrect event 
processing etc.

- Rollback, repair 
etc.



FAILURE MANAGEMENT ON MOBILE CORE
ECHO / Neutrino / L25GC (+) / CellClone / CoreKube

9



Failure Management on Mobile Core

10

• Summary

Research Keywords Main goal Open source Reliability Availability Resilience

ECHO

fast failure 
recovery, 

state 
consistency, 
low latency

A distributed network architecture for 
the EPC on the public cloud OpenEPC O O X

Neutrino Abstraction of reliable access to cellular 
services for ensuring low latency

OpenAirInterface, 
FlatBuffers O X O

L25GC NFV-based low-latency 5GC network 
solution Free5GC X O O

L25GC+
Newly shared-memory-based 
networking stack to support 

synchronous I/O between CP NFs.
Free5GC O O X

CellClone Fast and fault-tolerant control plane 
processing

OpenAirInterface, 
FlatBuffers O X O

CoreKube A novel message focused and cloud-
native mobile core system design

Open5GS, 
NextEPC X O O



11

• ECHO Challenge & Solution

ECHO: A Reliable Distributed Cellular Core Network
for Hyper-scale Public Clouds (1/4)

Challenge 1: Remaining 99.999% uptime despite VM/container crashes and network partition

Solution 1: Fast malfunctioning replacement and scaling through NF replication 

Challenge 2: 10x slower fault detection time in the public cloud compared to cellular core

Solution 2: Operate serializable and in FIFO order

Challenge 3: Maintain consistency of mobile clients' session state

Solution 3: Guarantee components atomicity and in-order execution



12

ECHO: A Reliable Distributed Cellular Core Network
for Hyper-scale Public Clouds (2/4)

ECHO Overview

- Replication of control-plane 
components (e.g., MME, PGW) behind a 
load balancer

- A high availability persistent storage that 
maintains state for all replicas
Ø (Solution 1) possible to malfunctioning 

component quick replacement & 
scaling

- A Necessarily reliable BS entry point

• ECHO Overview



13

• Solution 2: Operate serializable and in FIFO order 

ECHO: A Reliable Distributed Cellular Core Network
for Hyper-scale Public Clouds (3/4)

ECHO’s leaf component is linearizable

- Components non-blocking even in 
redundant and failure

- Operating linearizable (i.e., serializable 
and in FIFO order) leaf component

- Linearizable results: aborted, successfully, 
crashed before the update, crashed after 
the update



14

• Solution 3. Guarantee components atomicity and in-order execution

ECHO: A Reliable Distributed Cellular Core Network
for Hyper-scale Public Clouds (4/4)

- Stateless instances that perform non-
blocking algorithms in parallel

- Concurrent retries of request at entry point 
→ occurrence of inconsistency

- Component’s atomicity: atomic 
conditional writes provided by the persistent 
storage

- Component’s in-order execution: delete 
old request ID Caused state inconsistency



15

• Neutrino Challenge & Solution

Neutrino: A Low Latency and Consistent Cellular CP 
(1/3)

Challenge 1: UE-Core state inconsistency

Challenge 2: Slow state updates

Challenge 3: Frequent control handovers

Primary-backup state 
replication schemeSolution 1: Consistent UE processing

Solution 2: Fast serialization engine

Solution 3: Proactive geo-replication



16

• Challenge 1: UE-Core state inconsistency

Neutrino: A Low Latency and Consistent Cellular CP 
(2/3)

- Replicating UE state across multiple CPFs to provide fault tolerance
- Inability to provide state consistency and availability between replicas

An example scenario in inconsistent user state



17

Neutrino: A Low Latency and Consistent Cellular CP 
(3/3)

• Solution 1: Consistent UE processing

Neutrino’s system architecture diagram

- Replication with two-level of failure recovery
Ø Replicated UE state store and two-level failure recovery



18

L25GC: A Low Latency 5G Core Network (1/3)
• L25GC Challenge & Solution

Challenge 1: 3GPP-recommended Service Based Interface (SBI)

Challenge 2: Complex Handover Procedure

Challenge 3: 5G UPF likely to have more PDRs in a single user session

Challenge 4: Sub-optimal NF resiliency and recovery

5G CP

NF resiliency

Solution 1: NF consolidation through careful placement + shared memory communication

Solution 2: Reduce latency through smart buffering at 5G core for handovers

Solution 3: Fast PDR lookup in UPF through improved data structures and packet classification

Solution 4: Resiliency through improved state replication to backup NFs



19

- Shared memory for communication 
between NFs in a 5GC unit on same node

- Flat memory access: no serialization cost
- Information changed directly in user 

space: no kernel overheads or protocol 
processing

- Zero-copy packet delivery between NFs: 
no data movement

L25GC: A Low Latency 5G Core Network (2/3)
• Solution 1: NF consolidation through careful placement & shared

memory communication

L25GC architecture



20

• Solution 4: Resiliency through improved state replication to backup NFs

L25GC: A Low Latency 5G Core Network (3/3)

ü 2 levels of resiliency to support software failure 
(local resiliency) and node/link failure (remote 
resiliency)

ü Local resiliency: state stored in shared memory

ü Remote resiliency: use reinforce (uses 
external synchrony) to continue the 
speculative execution of user events



21

L25GC+: An Improved, 3GPP-compliant 5G Core for
Low-latency Control Plane Operations (1/4)

• L25GC+ Challenge & Solution

Challenge 1: Compatibility issues with HTTP/REST-based SBI

Challenge 2: Supporting a limited number of user sessions 

Challenge 3: Code refactoring time is required when porting source code 

Synchronous I/O 
over shared 
memorySolution 1: A newly designed shared memory I/O interface

Solution 2: Keep the state in a state map maintained in the shared memory networking stack

Solution 3: The cross-language support provided by the GO interface

Concurrent 
connection



22

L25GC+: An Improved, 3GPP-compliant 5G Core for
Low-latency Control Plane Operations (2/4)

• Solution 1: A newly designed shared memory I/O interface
(Unified Sync/Async communication)

L25GC+ architecture

- Shared memory I/O stack: Shared 
memory processing w/ lock-free rings

- API Libs: Synchronous I/O support
- Concurrent connection management: 

Using “User session table"
- Cross-language support: CGo interface in 

Golang



23

L25GC+: An Improved, 3GPP-compliant 5G Core for
Low-latency Control Plane Operations (3/4)

• Solution 1: A newly designed shared memory I/O interface

- Adding blocking primitives to the asynchronous shared memory network stack
- The caller of Read() is blocked until it receives the request from the I/O stack
- The caller of Write() is blocked until the data in send buffer is moved to the shm

buffer

Synchronous I/O primitives from L25GC+’s socket APIs



24

L25GC+: An Improved, 3GPP-compliant 5G Core for
Low-latency Control Plane Operations (4/4)

• Solution 2: Keep the state in a state map maintained in the shared
memory networking stack

- Turning “stateless” to “stateful”
- User session table in I/O stack
- Dispatch requests to different user 

sessions via IP 4-tuples lookup
Concurrent user session support in L25GC+.



25

• CellClone Challenge & Solution

CellClone: Enabling Emerging Edge Applications Through
a 5G CP Intervention (1/3)

Challenge 1: High Delays with Synchronous Replication

Challenge 2: Inconsistency Due to Non-determinism

Challenge 3: Failure Detection can be a Potential Bottleneck
Challenge 4: Adverse Impact of Stragglers

Custom quorum-based 
consistency protocol Solution 1: Fast Consistency Protocol

Solution 2: Individualized Approach to Non-Determinism

Solution 3: Active Replication

Quorum selection & duplicate 
filtration at the CTA



26q

• Solution 1: Fast Consistency Protocol

CellClone: Enabling Emerging Edge Applications Through
a 5G CP Intervention (2/3)

Temporary meta-state for the user at the CTA

- Out-of-sync CPF tracking
Ø P1. create temporary meta-state for UE in CTA
Ø P2. respond to CTA with logical clock of M1(20) 

in quorum
Ø P3. for M2, the response from replica A in CTA
Ø P4. response to CTA from replica B before 

timer T1 expires
Ø P5. expires failure detection timer T1
Ø P6. delete temporary meta-state for UE from 

CTA



27

• Solution 3: Active Replication

CellClone: Enabling Emerging Edge Applications Through
a 5G CP Intervention (3/3)

CellClone’s system architecture.

- Quorum selection
- Duplicate filtration at the CTA

Ø Using logical clock timestamp



28

CoreKube: An Efficient, Autoscaling and Resilient
Mobile Core System (1/3)

• CoreKube Challenge & Solution

Challenge 1: The heavily entangled nature of processing and state in standard core
functions/events.

Challenge 2: decouple the RAN-core interface from control plane processing in the core.

Truly Stateless 
Workers

Solution 1: Decoupling all the core network states into a separate database

Solution 2: A frontend at the RAN-core interface in CoreKube that encapsulates/
decapsulates messages from/to the RAN 

Decoupling
RAN-Core 
interface



29

CoreKube: An Efficient, Autoscaling and Resilient
Mobile Core System (2/3)

• Solution 1: Decoupling core network state from control plane processing

CoreKube architecture

Solution 1.
- Three main components: a frontend, a 

pool of workers, and a database (DB)
- CoreKube components are containerized 

à autoscaling and self-healing 
capabilities

- Development of standard-compliant

CoreKube Worker Architecture

- Five worker components: Listener, NGAP 
input/output Handler, NAS input/output 
Handler



30

CoreKube: An Efficient, Autoscaling and Resilient
Mobile Core System (3/3)

• Solution 2: Decoupling control plane processing in the core from RAN
interface

CoreKube Frontend Architecture

- Messages are exchanged with RAN 
through the SCTP protocol according to 
the standard.

- Internally communicates with workers 
using the UDP protocol through the load 
balancer.


