Opuntia (Cactaceae) Fibrous Network-reinforced Composites: Thermal, Viscoelastic, Interfacial Adhesion and Biodegradation Behavior 


Vol. 21,  No. 10, pp. 2353-2363, Oct.  2020
10.1007/s12221-020-9675-4


PDF
  Abstract

Bio-based composites provide an improved sustainability and carbon footprint compared to conventional composites. In this context, this study aims in developing and characterizing green composites using a novel natural fibersfabric formed by interconnected network of fibers struts with intricate structures isolated from Opuntia (Cactaceae) as reinforcing agent in bio-based composites. Two thermoplastic polymers, which were polyvinyl alcohol and styrene-butadiene rubber, were used as the matrices. Composites with 3, 6 and 9 % (w/w) fibrous networks were produced and characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The DMA was performed to determine the thermomechanical and viscoelastic properties according to the orientation distribution of the fibers. The properties of bio-based materials changed systematically, depending on the direction of axial fibers in the network and showing anisotropy of the material. Then, the dimensional properties and biodegradability in soil burial of the bio-based composites were investigated. The good interfacial interaction between the fiber and the polymer enhanced the composite performance, especially with respect to the thermal and thermomechanical properties as well as biodegradability.

  Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.


  Cite this article

[IEEE Style]

F. Mannai, H. Elhleli, A. Dufresne, E. Elaloui, Y. Moussaoui, "Opuntia (Cactaceae) Fibrous Network-reinforced Composites: Thermal, Viscoelastic, Interfacial Adhesion and Biodegradation Behavior," Fibers and Polymers, vol. 21, no. 10, pp. 2353-2363, 2020. DOI: 10.1007/s12221-020-9675-4.

[ACM Style]

Faten Mannai, Hanadi Elhleli, Alain Dufresne, Elimame Elaloui, and Younes Moussaoui. 2020. Opuntia (Cactaceae) Fibrous Network-reinforced Composites: Thermal, Viscoelastic, Interfacial Adhesion and Biodegradation Behavior. Fibers and Polymers, 21, 10, (2020), 2353-2363. DOI: 10.1007/s12221-020-9675-4.