Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact 


Vol. 21,  No. 12, pp. 2873-2887, Dec.  2020
10.1007/s12221-020-0026-2


PDF
  Abstract

Carbon fiber-reinforced composite materials are widely employed in aircraft structures due to their high specific strength and high specific modulus. However, the poor impact resistance of carbon fiber reinforced composites creates challenges for aircraft design and maintenance. The introduction of a layer of glass fibers in the hybrid composites can effectively improve the impact performance of the composite laminate. In this work, finite element models for low-velocity impact of carbon fiber laminate and glass fiber laminate are established and validated. A VUMAT subroutine in Abaqus is implemented to evaluate the progressive damage of the composite materials, and a cohesive-zone model is employed to simulate the interface failure behavior. The impact resistance of hybrid composite laminates is systematically studied based on the results of the finite element simulation. Ten different hybrid configurations are studied and compared with a composite laminate having a single type of fiber reinforcement. The numerical results for the global mechanical response, damage modes and characteristics are extracted and systematically discussed. The results suggest that laminates having carbon fiber layers on the top and bottom surfaces with glass fiber layers between them perform the best in terms of energy absorption. When the glass fiber layers are used for the top and bottom surfaces with carbon fiber layers as the core, the presence of a carbon fiber layer with a

  Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.


  Cite this article

[IEEE Style]

C. Zhang, J. Huang, X. Li, C. Zhang, "Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact," Fibers and Polymers, vol. 21, no. 12, pp. 2873-2887, 2020. DOI: 10.1007/s12221-020-0026-2.

[ACM Style]

Chenxu Zhang, Jia Huang, Xi Li, and Chao Zhang. 2020. Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact. Fibers and Polymers, 21, 12, (2020), 2873-2887. DOI: 10.1007/s12221-020-0026-2.